Skip to main content
Log in

High-efficiency electrochemical removal of Cd(II) from wastewater using birnessite-biochar composites: Performance and mechanism

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Birnessite has been widely used for electrochemical removal of heavy metals due to its high pseudocapacitance. Incorporation of carbon-based materials into birnessite can enhance its conductivity and stability, and synergistically improve the electrochemical adsorption capacity due to the double-layer capacitor reaction derived from carbon-based materials. In this study, biochar was successfully incorporated with birnessite at various ratios to synthesize composites (BC-Mn) for effective electrochemical removal of cadmium (Cd(II)) from water. The effects of cell voltage, initial pH, and recycling performance of BC-Mn were evaluated. As a result, the electrosorption capacity of BC-Mn for Cd(II) exhibited gradual increases with increasing birnessite content and reached equilibrium at a Mn content of 20% (BC-Mn20). The Cd(II) adsorption capacity of BC-Mn20 rose at higher cell voltage, and reached the maximum at 1.2 V. At pH 3.0–6.0, the electrosorption capacity initially rose until pH 5.0 and then approached equilibrium with a further increase in pH value. The Cd(II) electrochemical adsorption capacity of BC-Mn20 in the solution could reach 104.5 mg g−1 at pH 5.0 for 8 h at 1.2 V. Moreover, BC-Mn20 exhibited excellent reusability with a stability of 95.4% (99.7 mg g−1) after five cycles of reuse. Due to its superior heavy metal adsorption capacity and reusability, BC-Mn20 may have a promising prospect in the remediation of heavy metal polluted water.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  • Adorna, J., Jr., Borines, M., & Doong, R.-A. (2020). Coconut shell derived activated biochar–manganese dioxide nanocomposites for high performance capacitive deionization. Desalination, 492, 114602.

    Article  CAS  Google Scholar 

  • Belgibayeva, A., & Taniguchi, I. (2019). Synthesis and characterization of SiO2/C composite nanofibers as free-standing anode materials for Li-ion batteries. Electrochimica Acta, 328, 135101.

    Article  CAS  Google Scholar 

  • Chen, Y., Zhang, Z., Deng, W., Wang, Z., Gao, M., Gao, C., Chen, W., Dai, Q., & Ueyama, T. (2022). Mechanistic insight into the electrochemical absorption adsorption behaviour of Cd2+ and Na+ on MnO2 in a deionization supercapacitor. Desalination, 521, 115384.

    Article  CAS  Google Scholar 

  • Chu, M., Tian, W., Zhao, J., Zou, M., Lu, Z., Zhang, D., & Jiang, J. (2022). A comprehensive review of capacitive deionization technology with biochar-based electrodes: Biochar-based electrode preparation, deionization mechanism and applications. Chemosphere, 307, 136024.

    Article  CAS  Google Scholar 

  • Cuong, D. V., Matsagar, B. M., Lee, M., Hossain, M. S. A., Yamauchi, Y., Vithanage, M., Sarkar, B., Ok, Y. S., Wu, K.C.-W., & Hou, C.-H. (2021). A critical review on biochar-based engineered hierarchical porous carbon for capacitive charge storage. Renewable and Sustainable Energy Reviews, 145, 111029.

    Article  CAS  Google Scholar 

  • Cuong, D. V., Wu, P.-C., Liou, S. Y. H., & Hou, C.-H. (2022). An integrated active biochar filter and capacitive deionization system for high-performance removal of arsenic from groundwater. Journal of Hazardous Materials, 423, 127084.

    Article  CAS  Google Scholar 

  • Dai, M., Zhang, M., Xia, L., Li, Y., Liu, Y., & Song, S. (2017). Combined electrosorption and chemisorption of As(V) in water by using Fe-rGO@AC electrode. ACS Sustainable Chemistry & Engineering, 5, 6532–6538.

    Article  CAS  Google Scholar 

  • Divyapriya, G., Vijayakumar, K. K., & Nambi, I. (2019). Development of a novel graphene/Co3O4 composite for hybrid capacitive deionization system. Desalination, 451, 102–110.

    Article  CAS  Google Scholar 

  • Gao, R., Xiang, L., Hu, H., Fu, Q., Zhu, J., Liu, Y., & Huang, G. (2020). High-efficiency removal capacities and quantitative sorption mechanisms of Pb by oxidized rape straw biochars. Science of the Total Environment, 699, 134262.

    Article  CAS  Google Scholar 

  • Gong, Y., Zhao, D., & Wang, Q. (2018). An overview of field-scale studies on remediation of soil contaminated with heavy metals and metalloids: Technical progress over the last decade. Water Research, 147, 440–460.

    Article  CAS  Google Scholar 

  • Guo, Y., Zhang, Y., Shao, H., Wang, Z., Wang, X., & Jiang, X. (2014). Label-free colorimetric detection of cadmium ions in rice samples using gold nanoparticles. Analytical Chemistry, 86, 8530–8534.

    Article  CAS  Google Scholar 

  • Han, R., Zou, W., Li, H., Li, Y., & Shi, J. (2006). Copper(II) and lead(II) removal from aqueous solution in fixed-bed columns by manganese oxide coated zeolite. Journal of Hazardous Materials, 137, 934–942.

    Article  CAS  Google Scholar 

  • Hao, J., Meng, X., Fang, S., Cao, H., Lv, W., Zheng, X., Liu, C., Chen, M., & Sun, Z. (2020). MnO2-functionalized amorphous carbon sorbents from spent lithium-ion batteries for highly efficient removal of cadmium from aqueous solutions. Industrial & Engineering Chemistry Research, 59, 10210–10220.

    Article  CAS  Google Scholar 

  • Hsu, B. Y. W., Wang, M., Zhang, Y., Vijayaragavan, V., Wong, S. Y., Chang, A.Y.-C., Bhakoo, K. K., Li, X., & Wang, J. (2014). Silica–F127 nanohybrid-encapsulated manganese oxide nanoparticles for optimized T1 magnetic resonance relaxivity. Nanoscale, 6, 293–299.

    Article  CAS  Google Scholar 

  • Huang, Z., Lu, L., Cai, Z., & Ren, Z. J. (2016). Individual and competitive removal of heavy metals using capacitive deionization. Journal of Hazardous Materials, 302, 323–331.

    Article  CAS  Google Scholar 

  • Islamoglu, S., Yilmaz, L., & Ozbelge, H. (2006). Development of a precipitation based separation scheme for selective removal and recovery of heavy metals from cadmium rich electroplating industry effluents. Separation Science and Technology, 41, 3367–3385.

    Article  CAS  Google Scholar 

  • Jin, H., Hanif, M. U., Capareda, S., Chang, Z., Huang, H., & Ai, Y. (2016). Copper(II) removal potential from aqueous solution by pyrolysis biochar derived from anaerobically digested algae-dairy-manure and effect of KOH activation. Journal of Environmental Chemical Engineering, 4, 365–372.

    Article  CAS  Google Scholar 

  • Kalfa, A., Shapira, B., Shopin, A., Cohen, I., Avraham, E., & Aurbach, D. (2020). Capacitive deionization for wastewater treatment: Opportunities and challenges. Chemosphere, 241, 125003.

    Article  CAS  Google Scholar 

  • Kamran, U., Heo, Y.-J., Lee, J. W., & Park, S.-J. (2019). Chemically modified activated carbon decorated with MnO2 nanocomposites for improving lithium adsorption and recovery from aqueous media. Journal of Alloys and Compounds, 794, 425–434.

    Article  CAS  Google Scholar 

  • Lee, V., Porter, J., & McKay, G. (2000). Development of fixed-bed adsorber correlation models. Industrial & Engineering Chemistry Research, 39, 2427–2433.

    Article  CAS  Google Scholar 

  • Li, A., Ge, W., Liu, L., & Qiu, G. (2022a). Preparation, adsorption performance and mechanism of MgO-loaded biochar in wastewater treatment: A review. Environmental Research, 212, 113341.

    Article  CAS  Google Scholar 

  • Li, A., Zhang, Y., Ge, W., Zhang, Y., Liu, L., & Qiu, G. (2022b). Removal of heavy metals from wastewaters with biochar pyrolyzed from MgAl-layered double hydroxide-coated rice husk: Mechanism and application. Bioresource Technology, 347, 126425.

    Article  CAS  Google Scholar 

  • Li, X., Zhang, J., Liu, B., & Su, Z. (2021). A critical review on the application and recent developments of post-modified biochar in supercapacitors. Journal of Cleaner Production, 310, 127428.

    Article  CAS  Google Scholar 

  • Liang, J., Li, X., Yu, Z., Zeng, G., Luo, Y., Jiang, L., Yang, Z., Qian, Y., & Wu, H. (2017). Amorphous MnO2 Modified Biochar Derived from Aerobically Composted Swine Manure for Adsorption of Pb(II) and Cd(II). ACS Sustainable Chemistry & Engineering, 5, 5049–5058.

    Article  CAS  Google Scholar 

  • Lin, S., Yang, X., Liu, L., Li, A., & Qiu, G. (2022). Electrosorption of cadmium and arsenic from wastewaters using nitrogen-doped biochar: Mechanism and application. Journal of Environmental Management, 301, 113921.

    Article  CAS  Google Scholar 

  • Liu, L., Luo, Y., Tan, W., Liu, F., Suib, S. L., Zhang, Y., & Qiu, G. (2017a). Zinc removal from aqueous solution using a deionization pseudocapacitor with a high-performance nanostructured birnessite electrode. Environmental Science: Nano, 4, 811–823.

    CAS  Google Scholar 

  • Liu, L., Luo, Y., Tan, W., Liu, F., Suib, S. L., Zhang, Y., & Qiu, G. (2019). Cd2+ adsorption performance of tunnel-structured manganese oxides driven by electrochemically controlled redox. Environmental Pollution, 244, 783–791.

    Article  CAS  Google Scholar 

  • Liu, L., Qiu, G., Suib, S. L., Liu, F., Zheng, L., Tan, W., & Qin, L. (2017b). Enhancement of Zn2+ and Ni2+ removal performance using a deionization pseudocapacitor with nanostructured birnessite and its carbon nanotube composite electrodes. Chemical Engineering Journal, 328, 464–473.

    Article  CAS  Google Scholar 

  • Liu, X., & Wang, J. (2020). Electro-assisted adsorption of Cs(I) and Co(II) from aqueous solution by capacitive deionization with activated carbon cloth/graphene oxide composite electrode. Science of the Total Environment, 749, 141524.

    Article  CAS  Google Scholar 

  • Liu, Y.-H., Hsi, H.-C., Li, K.-C., & Hou, C.-H. (2016). Electrodeposited manganese dioxide/activated carbon composite as a high-performance electrode material for capacitive deionization. ACS Sustainable Chemistry & Engineering, 4, 4762–4770.

    Article  CAS  Google Scholar 

  • Lu, T., Wang, W., Liu, L., Wang, L., Hu, J., Li, X., & Qiu, G. (2022). Remediation of cadmium-polluted weakly alkaline dryland soils using iron and manganese oxides for immobilized wheat uptake. Journal of Cleaner Production, 365, 132794.

    Article  CAS  Google Scholar 

  • Marques, C. R., Wibowo, D., Rubio-Reyes, P., Serafim, L. S., Soares, A. M., & Rehm, B. H. (2020). Bacterially assembled biopolyester nanobeads for removing cadmium from water. Water Research, 186, 116357.

    Article  CAS  Google Scholar 

  • Mauchauffée, S., Meux, E., & Schneider, M. (2008). Selective precipitation of cadmium from nickel cadmium sulphate solutions using sodium decanoate. Separation and Purification Technology, 62, 394–400.

    Article  Google Scholar 

  • Nirmaladevi, S., Boopathiraja, R., Kandasamy, S. K., Sathishkumar, S., & Parthibavarman, M. (2021). Wood based biochar supported MnO2 nanorods for high energy asymmetric supercapacitor applications. Surfaces and Interfaces, 27, 101548.

    Article  CAS  Google Scholar 

  • Noh, Y., Jo, E.-J., Mun, H., Ahn, Y.-D., & Kim, M.-G. (2017). Homogeneous and selective detection of cadmium ions by forming fluorescent cadmium-protein nanoclusters. Chemosphere, 174, 524–530.

    Article  CAS  Google Scholar 

  • Organization, W. H. (2021). Manganese in drinking water: background document for development of WHO guidelines for drinking-water quality, World Health Organization.

  • Peng, Q., Liu, L., Luo, Y., Zhang, Y., Tan, W., Liu, F., Suib, S. L., & Qiu, G. (2016). Cadmium Removal from Aqueous Solution by a Deionization Supercapacitor with a Birnessite Electrode. ACS Applied Materials & Interfaces, 8, 34405–34413.

    Article  CAS  Google Scholar 

  • Saji, V. S., & Lee, C.-W. (2014). Potential and pH dependent pseudocapacitance of Mo/Mo oxides-An impedance study. Electrochimica Acta, 137, 647–653.

    Article  CAS  Google Scholar 

  • Shi, J., Wang, Y., Du, W., & Hou, Z. (2016). Synthesis of graphene encapsulated Fe3C in carbon nanotubes from biomass and its catalysis application. Carbon, 99, 330–337.

    Article  CAS  Google Scholar 

  • Song, P., Yang, Z., Xu, H., Huang, J., Yang, X., & Wang, L. (2014). Investigation of Influencing Factors and Mechanism of Antimony and Arsenic Removal by Electrocoagulation Using Fe–Al Electrodes. Industrial & Engineering Chemistry Research, 53, 12911–12919.

    Article  CAS  Google Scholar 

  • Tang, J., Lv, H., Gong, Y., & Huang, Y. (2015). Preparation and characterization of a novel graphene/biochar composite for aqueous phenanthrene and mercury removal. Bioresource Technology, 196, 355–363.

    Article  CAS  Google Scholar 

  • Toupin, M., Brousse, T., & Bélanger, D. (2004). Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor. Chemistry of Materials, 16, 3184–3190.

    Article  CAS  Google Scholar 

  • Wan, C., Jiao, Y., & Li, J. (2016). Core–shell composite of wood-derived biochar supported MnO2 nanosheets for supercapacitor applications. RSC Advances, 6, 64811–64817.

    Article  CAS  Google Scholar 

  • Wan, S., Yu, C., Li, Y., Lu, Z., Wang, Y., Wang, Y., & He, F. (2021). Highly selective and ultrafast removal of cadmium and copper from water by magnetic core-shell microsphere. Chemical Engineering Journal, 405, 126576.

    Article  CAS  Google Scholar 

  • Wang, F., Jin, L., Guo, C., Min, L., Zhang, P., Sun, H., Zhu, H., & Zhang, C. (2021). Enhanced heavy metals sorption by modified biochars derived from pig manure. Science of the Total Environment, 786, 147595.

    Article  CAS  Google Scholar 

  • Wang, G., Qian, B., Dong, Q., Yang, J., Zhao, Z., & Qiu, J. (2013). Highly mesoporous activated carbon electrode for capacitive deionization. Separation and Purification Technology, 103, 216–221.

    Article  CAS  Google Scholar 

  • Wang, Y., Liu, L., Yang, X., Suib, S. L., & Qiu, G. (2022). Removal of As(V) from wastewaters using magnetic iron oxides formed by zero-valent iron electrocoagulation. Journal of Environmental Management, 307, 114519.

    Article  CAS  Google Scholar 

  • Wu, Z., Chen, X., Yuan, B., & Fu, M. L. (2020). A facile foaming-polymerization strategy to prepare 3D MnO2 modified biochar-based porous hydrogels for efficient removal of Cd(II) and Pb(II). Chemosphere, 239, 124745.

  • Wu, Z.-S., Ren, W., Wang, D.-W., Li, F., Liu, B., & Cheng, H.-M. (2010). High-energy MnO2 nanowire/graphene and graphene asymmetric electrochemical capacitors. ACS Nano, 4, 5835–5842.

    Article  CAS  Google Scholar 

  • Xue, Y., Teng, W., Chen, Y., Ma, Q., Chen, X., Sun, Y., Fan, J., Qiu, Y., & Fu, R. (2022). Amorphous Mn-La oxides immobilized on carbon sphere for efficient removal of As(V), Cd(II), and Pb(II): Co-adsorption and roles of Mn species. Chemical Engineering Journal, 429, 132262.

    Article  CAS  Google Scholar 

  • Yang, X., Liu, L., Tan, W., Qiu, G., & Liu, F. (2018). High-performance Cu2+ adsorption of birnessite using electrochemically controlled redox reactions. Journal of Hazardous Materials, 354, 107–115.

    Article  CAS  Google Scholar 

  • Yin, B., Zhang, S., Jiang, H., Qu, F., & Wu, X. (2015). Phase-controlled synthesis of polymorphic MnO2 structures for electrochemical energy storage. Journal of Materials Chemistry A, 3, 5722–5729.

    Article  CAS  Google Scholar 

  • Zhang, C., He, D., Ma, J., Tang, W., & Waite, T. D. (2018). Faradaic reactions in capacitive deionization (CDI) - problems and possibilities: A review. Water Research, 128, 314–330.

    Article  CAS  Google Scholar 

  • Zhang, S., & Chen, G. Z. (2008). Manganese oxide based materials for supercapacitors. Energy Materials, 3, 186–200.

    Article  CAS  Google Scholar 

  • Zhang, Y., Li, A., Liu, L., Duan, X., Ge, W., Liu, C., Qiu, G. (2023). Enhanced remediation of cadmium-polluted soil and water using facilely prepared MnO2-coated rice husk biomass. Chemical Engineering Journal, 141311.

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant Nos. 42007127, 42077133 and 41877025), the National Key Research and Development Program of China (Grant Nos. 2020YFC1808503) and Leading Talent of “Ten Thousand Plan”-National High-Level Talents Special Support Plan for financial support.

Author information

Authors and Affiliations

Authors

Contributions

Formal analysis, writing-original draft and investigation were performed by Yi Wang. Formal analysis, writing-review and editing, Shiwei Lin; Formal analysis, writing-review and editing, Lihu Liu; Supervision, writing-review and editing, Feng Wang; Writing-review and editing, Xiong Yang; Supervision, project administration and conceptualization, Guohong Qiu. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Feng Wang or Guohong Qiu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

All authors have read, understood, and have complied as applicable with the statement on "Ethical responsibilities of Authors" as found in the Instructions for Authors.

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2722 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Lin, S., Liu, L. et al. High-efficiency electrochemical removal of Cd(II) from wastewater using birnessite-biochar composites: Performance and mechanism. Environ Monit Assess 195, 549 (2023). https://doi.org/10.1007/s10661-023-11169-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-11169-x

Keywords

Navigation