Skip to main content
Log in

Magnetic two-dimensional chromium trihalides: structure, properties and modulation

  • Review
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The unique optical and electrical properties of two-dimensional (2D) materials provide a platform for novel van der Waals (vdW) heterojunction devices but the investigation of 2D magnetism is still limited. Recently, the emergence of long-range magnetic order atomically thin crystals expands 2D family, providing possibilities for the study of low-dimensional spin behavior and novel spintronics devices. As a specific member of magnetic van der Waals family, chromium trihalides (CrX3, X = Cl, Br, I) stimulated intensive interests on account of the newfangled magnetic properties. In this review, we briefly introduce the crystal structures, magnetism of the bulk and synthetic methods of 2D CrX3. Subsequently, the physical properties in atomically thin limit and magnetism manipulated by external field are presented. Next, some novel physical phenomena in CrX3 heterojunctions are discussed. Finally, the challenges and future directions are proposed. We focus on the intriguing physical phenomena in 2D magnetic CrX3 by combining related theoretical calculations and experimental results, providing a perspective on these emerging materials.

Graphical abstract

摘要

二维材料独特的光学和电学特性为新型的范德华异质结器件提供了平台, 但对二维磁性的研究还很有限。近年来, 长程磁有序原子级薄晶体的出现扩展了二维材料体系, 为低维自旋行为和新型自旋电子器件的研究提供了可能性。三卤化铬(CrX3, X = Cl, Br, I)作为磁性范德华家族的特殊成员, 因其新颖的磁性性质引起了人们的广泛关注。本文简要介绍了二维CrX3的晶体结构、磁性及合成方法。随后探讨了二维极限下的物理性质和外加磁场作用下的磁性质。接着, 讨论了CrX3异质结中的一些新奇的物理现象。最后, 提出了研究中存在的问题和未来的发展方向。本文结合相关的理论计算和实验结果, 重点研究了二维磁性CrX3材料中有趣的物理现象, 为这些新兴材料的研究提供了新的思路.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Reproduced with permission from Ref. [28]. Copyright 2015, American Chemical Society. b CrBr3 crystal. Reproduced with permission from Ref. [51], Copyright 2018, Wiley–VCH. c CrCl3 crystals. Reproduced with permission from Ref. [45]. Copyright 2017, American Physical Society. d Optical microscope (OM) images of 2D CrBr3 cleaved from a bulk crystal in air after different time indicating its stability. Reproduced with permission from Ref. [55]. Copyright 2019, American Chemical Society. e OM images of 2D CrI3 under ambient conditions illuminated with light for different time. Reproduced with permission from Ref. [56]. Copyright 2018, American Chemical Society. f OM images of cleaved CrCl3 down to monolayer. Reproduced with permission from Ref. [45]. Copyright 2017, American Physical Society

Fig. 3

Reproduced with permission from Ref. [8]. Copyright 2017, Springer Nature. MCD versus out-of-plane magnetic field for b monolayer and c bilayer CrI3 at 4 K. Reproduced with permission from Ref. [12]. Copyright 2018, Springer Nature. RMCD versus out-of-plane field for d trilayer and e four-layer CrI3. Reproduced with permission from Ref. [13]. Copyright 2018, American Association for the Advancement of Science

Fig. 4

Reproduced with permission from Ref. [29]. Copyright 2019, Springer Nature. f Polarization patterns of A1g mode at 60 and 15 K of monolayer CrI3; g Co- and cross-polarized Raman spectra taken in an AFM state at a zero applied magnetic field (left) and fully spin-up polarized state at 1.5 T (right) of bilayer CrI3. Reproduced with permission from Ref. [73]. Copyright 2020, Springer Nature. h 247 cm−1 Raman peak position shift as a function of polarization angle for bulk CrCl3 (left) and an exfoliated 17-nm-thick flake (right). Reproduced with permission from Ref. [36]. Copyright 2019, Springer Nature

Fig. 5

Reproduced with permission from Ref. [75]. Copyright 2018, Springer Nature. g Polarization-resolved PL for monolayer CrBr3 at ± 0.5 T; h hysteresis loops at various temperatures for monolayer CrBr3; i polarization as a function of magnetic field for bilayer CrBr3. Reproduced with permission from Ref. [55]. Copyright 2019, American Chemical Society. j LCP and RCP light components of PL from a 5-nm CrCl3. Reproduced with permission from Ref. [24]. Copyright 2019, American Chemical Society

Fig. 6

Reproduced with permission from Ref. [76]. Copyright 2019, American Association for the Advancement of Science. c MFM signal as a function of magnetic field; d illustration of stacking orders and spin configurations in surface and inner layers of CrI3; e MFM images of a 200-nm CrI3 flake. Reproduced with permission from Ref. [77]. Copyright 2020, American Chemical Society. f Spin-polarized tunneling spectra and g dI/dV curves as a function of magnetic field of monolayer CrBr3; spin-polarized tunneling and atomic structure of h H-type and i R-type bilayer CrBr3. Reproduced with permission from Ref. [61]. Copyright 2019, American Association for the Advancement of Science

Fig. 7

Reproduced with permission from Ref. [85]. Copyright 2019, Springer Nature

Fig. 8

Reproduced with permission from Ref. [90]. Copyright 2018, American Association for the Advancement of Science. Tunneling current (It) as a function of out-of-plane magnetic field at a selected bias voltage (left) through d bilayer, e trilayer, f 4-layer and corresponding sf-TMR ratio as a function of bias (right). Reproduced with permission from Ref. [13]. Copyright 2018 American, Association for the Advancement of Science

Fig. 9

Reproduced with permission from Ref. [17]. Copyright 2019, Springer Nature. d Schematic illustration of typical high-pressure experimental equipment; e tunnel current (It) versus applied magnetic field of a bilayer CrI3 at a series of pressures. Reproduced with permission from Ref. [16]. Copyright 2019, Springer Nature

Fig. 10

Reproduced with permission from Ref. [15]. Copyright 2018, Springer Nature. d Intensity of MOKE signal of a non-encapsulated bilayer CrI3 device as a function of both gate voltage and applied magnetic field; e selected horizontal line from d; f gate-driven transition from AFM to FM states; g schematic illustration depicting a potential difference between two layers. Reproduced with permission from Ref. [14]. Copyright 2018, Springer Nature. h Schematic illustration of dual-gate bilayer CrI3 field-effect device; i conductance of bilayer CrI3 as a function of gate voltage at 4 K; j MCD versus magnetic field at different doping levels; k coercive force (Hc), saturation magnetization (Ms) (both at 4 K) and Curie temperature (TC) at zero gate voltage as a function of gate voltage. Reproduced with permission from Ref. [12]. Copyright 2018, Springer Nature

Fig. 11

Reproduced with permission from Ref. [104]. Copyright 2020, American Chemical Society

Fig. 12

Reproduced with permission from Ref. [110]. Copyright 2019, Wiley–VCH. d Schematic illustration of vdW heterostructure of WSe2/CrI3; e schematic depicting spin orientation–dependent charge hopping between WSe2 and CrI3; f degree of circular polarization as a function of magnetic field of monolayer WSe2 with bilayer CrI3. Reproduced with permission from Ref. [113]. Copyright 2017, American Association for the Advancement of Science. g Gate dependence of linear conductance (G) of a CrI3/WTe2 device (left) and temperature dependence of minimum conductance (right); h second-harmonic current (I2f) versus magnetic field. Reproduced with permission from Ref. [120]. Copyright 2020, Springer Nature

Similar content being viewed by others

References

  1. Lu JM, Zheliuk O, Leermakers I, Yuan NFQ, Zeitler U, Law KT, Ye JT. Evidence for two-dimensional Ising superconductivity in gated MoS2. Science. 2015;350(6266):1353.

    CAS  Google Scholar 

  2. Zhao R, Wang Y, Deng D, Luo X, Lu WJ, Sun YP, Liu ZK, Chen LQ, Robinson J. Tuning phase transitions in 1T-TaS2 via the substrate. Nano Lett. 2017;17(6):3471.

    CAS  Google Scholar 

  3. Chang K, Liu JW, Lin HC, Wang N, Zhao K, Zhang AM, Jin F, Zhong Y, Hu XP, Duan WH, Zhang QM, Fu L, Xue QK, Chen X, Ji SH. Discovery of robust in-plane ferroelectricity in atomic-thick SnTe. Science. 2016;353(6296):274.

    CAS  Google Scholar 

  4. Mermin ND, Wagner H. Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models. Phys Rev Lett. 1966;17(22):1133.

    CAS  Google Scholar 

  5. Sivadas N, Daniels MW, Swendsen RH, Okamoto S, Xiao D. Magnetic ground state of semiconducting transition-metal trichalcogenide monolayers. Phys Rev B. 2015;91(23):235425.

    Google Scholar 

  6. Sachs B, Wehling TO, Novoselov KS, Lichtenstein AI, Katsnelson MI. Ferromagnetic two-dimensional crystals: single layers of K2CuF4. Phys Rev B. 2013;88(20):201402.

    Google Scholar 

  7. Gong C, Li L, Li Z, Ji H, Stern A, Xia Y, Cao T, Bao W, Wang C, Wang Y, Qiu ZQ, Cava RJ, Louie SG, Xia J, Zhang X. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature. 2017;546(7657):265.

    CAS  Google Scholar 

  8. Huang B, Clark G, Navarro-Moratalla E, Klein DR, Cheng R, Seyler KL, Zhong D, Schmidgall E, McGuire MA, Cobden DH, Yao W, Xiao D, Jarillo-Herrero P, Xu X. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature. 2017;546(7657):270.

    CAS  Google Scholar 

  9. Deng Y, Yu Y, Song Y, Zhang J, Wang NZ, Sun Z, Yi Y, Wu YZ, Wu S, Zhu J, Wang J, Chen XH, Zhang Y. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature. 2018;563(7729):94.

    CAS  Google Scholar 

  10. Lee JU, Lee S, Ryoo JH, Kang S, Kim TY, Kim P, Park CH, Park JG, Cheong H. Ising-type magnetic ordering in atomically thin FePS3. Nano Lett. 2016;16(12):7433.

    CAS  Google Scholar 

  11. Li W, Zeng Y, Zhao ZJ, Zhang B, Xu JJ, Huang XX, Hou YL. 2D magnetic heterostructures and their interface modulated magnetism. ACS Appl Mater Inter. 2021;13(43):50591.

    CAS  Google Scholar 

  12. Jiang SW, Li LZ, Wang ZF, Mak KF, Shan J. Controlling magnetism in 2D CrI3 by electrostatic doping. Nat Nanotechnol. 2018;13(7):549.

    CAS  Google Scholar 

  13. Song TC, Cai XH, Tu MWY, Zhang XO, Huang B, Wilson NP, Seyler KL, Zhu L, Taniguchi T, Watanabe K, McGuire MA, Cobden DH, Xiao D, Yao W, Xu XD. Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures. Science. 2018;360(6394):1214.

    CAS  Google Scholar 

  14. Huang B, Clark G, Klein DR, MacNeill D, Navarro-Moratalla E, Seyler KL, Wilson N, McGuire MA, Cobden DH, Xiao D, Yao W, Jarillo-Herrero P, Xu XD. Electrical control of 2D magnetism in bilayer CrI3. Nat Nanotechnol. 2018;13(7):544.

    CAS  Google Scholar 

  15. Jiang SW, Shan J, Mak KF. Electric-field switching of two-dimensional van der Waals magnets. Nat Mater. 2018;17(5):406.

    CAS  Google Scholar 

  16. Song TC, Fei ZY, Yankowitz M, Lin Z, Jiang QN, Hwangbo K, Zhang Q, Sun BS, Taniguchi T, Watanabe K, McGuire MA, Graf D, Cao T, Chu JH, Cobden DH, Dean CR, Xiao D, Xu XD. Switching 2D magnetic states via pressure tuning of layer stacking. Nat Mater. 2019;18(15):1298.

    CAS  Google Scholar 

  17. Li TX, Jiang SW, Sivadas N, Wang ZF, Xu Y, Weber D, Goldberger JE, Watanabe K, Taniguchi T, Fennie CJ, Fai Mak K, Shan J. Pressure-controlled interlayer magnetism in atomically thin CrI3. Nat Mater. 2019;18(12):1303.

    CAS  Google Scholar 

  18. Soriano D, Katsnelson MI, Fernandez RJ. Magnetic two-dimensional chromium trihalides: a theoretical perspective. Nano Lett. 2020;20(9):6225.

    CAS  Google Scholar 

  19. Zhang WB, Qu Q, Zhu P, Lam CH. Robust intrinsic ferromagnetism and half semiconductivity in stable two-dimensional single-layer chromium trihalides. J Mater Chem C. 2015;3(48):12457.

    CAS  Google Scholar 

  20. Lado JL, Fernández-Rossier J. On the origin of magnetic anisotropy in two dimensional CrI3. 2D Mater. 2017;4(3):035002.

  21. Kashin IV, Mazurenko VV, Katsnelson MI, Rudenko AN. Orbitally-resolved ferromagnetism of monolayer CrI3. 2D Mater. 2020;7(2):025036.

  22. Webster L, Yan JA. Strain-tunable magnetic anisotropy in monolayer CrCl3, CrBr3, and CrI3. Phys Rev B. 2018;98(14):144411.

  23. Bacaksiz C, Šabani D, Menezes RM, Milošević MV. Distinctive magnetic properties of CrI3 and CrBr3 monolayers caused by spin-orbit coupling. Phys Rev B. 2021;103(12):125418.

  24. Cai XH, Song TC, Wilson NP, Clark G, He MH, Zhang XO, Taniguchi T, Watanabe K, Yao W, Xiao D, McGuire MA, Cobden DH, Xu XD. Atomically thin CrCl3: an in-plane layered antiferromagnetic insulator. Nano Lett. 2019;19(6):3993.

    CAS  Google Scholar 

  25. Kim HH, Yang BW, Li SW, Jiang SW, Jin CH, Tao Z, Nichols G, Sfigakis F, Zhong SZ, Li CH, Tian SJ, Cory DG, Miao GX, Shan J, Mak KF, Lei HC, Sun K, Zhao LY, Tsen AW. Evolution of interlayer and intralayer magnetism in three atomically thin chromium trihalides. Proc Natl Acad Sci. 2019;116(23):11131.

    CAS  Google Scholar 

  26. Bedoya-Pinto A, Ji JR, Pandeya Avanindra K, Gargiani P, Valvidares M, Sessi P, Taylor James M, Radu F, Chang K, Parkin Stuart SP. Intrinsic 2D-XY ferromagnetism in a van der Waals monolayer. Science. 2021;374(6567):616.

    CAS  Google Scholar 

  27. Xue F, Hou YS, Wang Z, Wu RQ. Two-dimensional ferromagnetic van der Waals CrCl3 monolayer with enhanced anisotropy and Curie temperature. Phys Rev B. 2019;100(22):224429.

    CAS  Google Scholar 

  28. McGuire MA, Dixit H, Cooper VR, Sales BC. Coupling of crystal structure and magnetism in the layered, ferromagnetic insulator CrI3. Chem Mater. 2015;27(2):612.

    CAS  Google Scholar 

  29. Sun ZY, Yi YF, Song TC, Clark G, Huang B, Shan YW, Wu S, Huang D, Gao CL, Chen ZH, McGuire M, Cao T, Xiao D, Liu WT, Yao W, Xu XD, Wu SW. Giant nonreciprocal second-harmonic generation from antiferromagnetic bilayer CrI3. Nature. 2019;572(7770):497.

    CAS  Google Scholar 

  30. Jiang PH, Wang C, Chen DC, Zhong ZC, Yuan Z, Lu ZY, Ji W. Stacking tunable interlayer magnetism in bilayer CrI3. Phys Rev B. 2019;99(14):144401.

    CAS  Google Scholar 

  31. Sivadas N, Okamoto S, Xu XD, Fennie CJ, Xiao D. Stacking-dependent magnetism in bilayer CrI3. Nano Lett. 2018;18(12):7658.

    CAS  Google Scholar 

  32. Kong XR, Yoon HK, Han MJ, Liang LB. Switching interlayer magnetic order in bilayer CrI3 by stacking reversal. Nanoscale. 2021;13(38):16172.

    CAS  Google Scholar 

  33. Akram M, LaBollita H, Dey D, Kapeghian J, Erten O, Botana AS. Moiré skyrmions and chiral magnetic phases in twisted CrX3 (X = I, Br, and Cl) bilayers. Nano Lett. 2021;21(15):6633.

    CAS  Google Scholar 

  34. Sarkar S, Kratzer P. Magnetic exchange interactions in bilayer CrX3 (X=Cl, Br, and I): a critical assessment of the DFT+U approach. Phys Rev B. 2021;103(22):224421.

    CAS  Google Scholar 

  35. Zhu WX, Song C, Zhou YJ, Wang Q, Bai H, Pan F. Insight into interlayer magnetic coupling in 1T-type transition metal dichalcogenides based on the stacking of nonmagnetic atoms. Phys Rev B. 2021;103(22):224404.

    CAS  Google Scholar 

  36. Klein DR, MacNeill D, Song Q, Larson DT, Fang S, Xu M, Ribeiro RA, Canfield PC, Kaxiras E, Comin R, Jarillo-Herrero P. Enhancement of interlayer exchange in an ultrathin two-dimensional magnet. Nat Phys. 2019;15(12):1255.

    CAS  Google Scholar 

  37. Pollini I. Electron correlations and hybridization in chromium compounds. Solid State Commun. 1998;106(8):549.

    CAS  Google Scholar 

  38. Morosin B, Narath A. X-ray diffraction and nuclear quadrupole resonance studies of chromium trichloride. J Chem Phys. 1964;40(7):1958.

    CAS  Google Scholar 

  39. Handy LL, Gregory NW. Structural properties of chromium(III) iodide and some chromium(III) mixed halides. J Am Chem Soc. 1952;74(4):891.

    CAS  Google Scholar 

  40. Kanamori J. Superexchange interaction and symmetry properties of electron orbitals. J Phys Chem Solids. 1959;10(2):87.

    CAS  Google Scholar 

  41. Goodenough JB. An interpretation of the magnetic properties of the perovskite-type mixed crystals La1−xSrxCoO3−λ. J Phys Chem Solids. 1958;6(2):287.

    CAS  Google Scholar 

  42. Goodenough JB. Theory of the role of covalence in the perovskite-type manganites LaMnO3. Phys Rev. 1955;100(2):564.

    CAS  Google Scholar 

  43. Cable JW, Wilkinson MK, Wollan EO. Neutron diffraction investigation of antiferromagnetism in CrCl3. J Phys Chem Solids. 1961;19(1):29.

    CAS  Google Scholar 

  44. Hansen WN, Griffel M. Heat capacities of CrF3 and CrCl3 from 15 to 300°K. J Chem Phys. 1958;28(5):902.

    CAS  Google Scholar 

  45. McGuire MA, Clark G, Kc S, Chance WM, Jellison GE, Cooper VR, Xu XD, Sales BC. Magnetic behavior and spin-lattice coupling in cleavable van der Waals layered CrCl3 crystals. Phys Rev Mater. 2017;1(1):014001.

    Google Scholar 

  46. Serri M, Cucinotta G, Poggini L, Serrano G, Sainctavit P, Strychalska-Nowak J, Politano A, Bonaccorso F, Caneschi A, Cava RJ, Sessoli R, Ottaviano L, Klimczuk T, Pellegrini V, Mannini M. Enhancement of the magnetic coupling in exfoliated CrCl3 crystals observed by low-temperature magnetic force microscopy and X-ray magnetic circular dichroism. Adv Mater. 2020;32(24):2000566.

    CAS  Google Scholar 

  47. Narath A, Davis HL. Spin-wave analysis of the sublattice magnetization behavior of antiferromagnetic and ferromagnetic CrCl3. Phys Rev. 1965;137(1A):A163.

    Google Scholar 

  48. Tsubokawa I. On the magnetic properties of a CrBr3 single crystal. J Phys Soc Jpn. 1960;15(9):1664.

    CAS  Google Scholar 

  49. Hansen WN. Some Magnetic properties of the chromium (III) halides at 4.2 K. J Appl Phys. 1959;30(4):S304.

    Google Scholar 

  50. Dillon JF Jr, Olson CE. Magnetization, resonance, and optical properties of the ferromagnet CrI3. J Appl Phys. 1965;36(3):1259.

    CAS  Google Scholar 

  51. Abramchuk M, Jaszewski S, Metz KR, Osterhoudt GB, Wang Y, Burch KS, Tafti F. Controlling magnetic and optical properties of the van der Waals crystal CrCl3−xBrx via mixed halide chemistry. Adv Mater. 2018;30(25):1801325.

    Google Scholar 

  52. Starr C, Bitter F, Kaufmann AR. The magnetic properties of the iron group anhydrous chlorides at low temperatures. I. Experimental. Phys Rev. 1940;58(11):977.

    CAS  Google Scholar 

  53. Liu JY, Sun Q, Kawazoe Y, Jena P. Exfoliating biocompatible ferromagnetic Cr-trihalide monolayers. Phys Chem Chem Phys. 2016;18(13):8777.

    CAS  Google Scholar 

  54. Yang JJ, Wang J, Liu Q, Xu R, Sun YL, Li ZP, Gao FM, Xia MR. Band engineering in intrinsically magnetic CrBr3 monolayer. J Magn Magn Mater. 2020;502(15):166608.

    CAS  Google Scholar 

  55. Zhang ZW, Shang JZ, Jiang CY, Rasmita A, Gao WB, Yu T. Direct photoluminescence probing of ferromagnetism in monolayer two-dimensional CrBr3. Nano Lett. 2019;19(5):3138.

    CAS  Google Scholar 

  56. Shcherbakov D, Stepanov P, Weber D, Wang Y, Hu J, Zhu Y, Watanabe K, Taniguchi T, Mao Z, Windl W, Goldberger J, Bockrath M, Lau CN. Raman spectroscopy, photocatalytic degradation, and stabilization of atomically thin chromium tri-iodide. Nano Lett. 2018;18(7):4214.

    CAS  Google Scholar 

  57. Dean CR, Young AF, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard KL, Hone J. Boron nitride substrates for high-quality graphene electronics. Nat Nanotechnol. 2010;5(10):722.

    CAS  Google Scholar 

  58. Gillgren N, Wickramaratne D, Shi YM, Espiritu T, Yang JW, Hu J, Wei J, Liu X, Mao ZQ, Watanabe K, Taniguchi T, Bockrath M, Barlas Y, Lake RK, Ning LC. Gate tunable quantum oscillations in air-stable and high mobility few-layer phosphorene heterostructures. 2D Mater. 2014;2(1):011001.

  59. O’Hara DJ, Zhu T, Trout AH, Ahmed AS, Luo YK, Lee CH, Brenner MR, Rajan S, Gupta JA, McComb DW, Kawakami RK. Room temperature intrinsic ferromagnetism in epitaxial manganese selenide films in the monolayer limit. Nano Lett. 2018;18(5):3125.

    Google Scholar 

  60. Bonilla M, Kolekar S, Ma Y, Diaz HC, Kalappattil V, Das R, Eggers T, Gutierrez HR, Phan MH, Batzill M. Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates. Nat Nanotechnol. 2018;13(4):289.

    CAS  Google Scholar 

  61. Chen WJ, Sun ZY, Wang ZJ, Gu LH, Xu XD, Wu SW, Gao CL. Direct observation of van der Waals stacking–dependent interlayer magnetism. Science. 2019;366(6468):983.

    CAS  Google Scholar 

  62. Li PG, Wang C, Zhang JH, Chen SW, Guo DH, Ji W, Zhong DY. Single-layer CrI3 grown by molecular beam epitaxy. Sci Bull. 2020;65(13):1064.

    CAS  Google Scholar 

  63. De Siena MC, Creutz SE, Regan A, Malinowski P, Jiang QN, Kluherz KT, Zhu GM, Lin Z, De Yoreo JJ, Xu XD, Chu JH, Gamelin DR. Two-dimensional van der Waals nanoplatelets with robust ferromagnetism. Nano Lett. 2020;20(3):2100.

    Google Scholar 

  64. Buchner M, Höfler K, Henne B, Ney V, Ney A. Tutorial: Basic principles, limits of detection, and pitfalls of highly sensitive SQUID magnetometry for nanomagnetism and spintronics. J Appl Phys. 2018;124(16):161101.

    Google Scholar 

  65. Sato K. Measurement of magneto-optical Kerr effect using piezo-birefringent modulator. Jpn J Appl Phys. 1981;20(12):2403.

    CAS  Google Scholar 

  66. Wu M, Liu ZL, Cao T, Louie SG. Physical origin of giant excitonic and magneto-optical responses in two-dimensional ferromagnetic insulators. Nat Commun. 2019;10:1.

    Google Scholar 

  67. Vijay KG, Guo GY. Magnetism and magneto-optical effects in bulk and few-layer CrI3: a theoretical GGA+U study. New J Phys. 2019;21(5):053012.

    Google Scholar 

  68. Fei ZY, Huang B, Malinowski P, Wang WB, Song TC, Sanchez J, Yao W, Xiao D, Zhu XY, May AF, Wu W, Cobden DH, Chu JH, Xu XD. Two-dimensional itinerant ferromagnetism in atomically thin Fe3GeTe2. Nat Mater. 2018;17(9):778.

    CAS  Google Scholar 

  69. Jiang SW, Li LZ, Wang ZF, Shan J, Mak KF. Spin tunnel field-effect transistors based on two-dimensional van der Waals heterostructures. Nat Electron. 2019;2(4):159.

    Google Scholar 

  70. Shen YR. Surface properties probed by second-harmonic and sum-frequency generation. Nature. 1989;337(6207):519.

    CAS  Google Scholar 

  71. Yang BS, Zhang XL, Yang HX, Han XF, Yan Y. Nonmetallic atoms induced magnetic anisotropy in monolayer chromium trihalides. J Phys Chem C. 2019;123(1):691.

    CAS  Google Scholar 

  72. Ubrig N, Wang Z, Teyssier J, Taniguchi T, Watanabe K, Giannini E, Morpurgo AF, Gibertini M. Low-temperature monoclinic layer stacking in atomically thin CrI3 crystals. 2D Mater. 2019;7(1):015007.

  73. Huang B, Cenker J, Zhang XO, Ray EL, Song TC, Taniguchi T, Watanabe K, McGuire MA, Xiao D, Xu XD. Tuning inelastic light scattering via symmetry control in the two-dimensional magnet CrI3. Nat Nanotechnol. 2020;15(3):212.

    CAS  Google Scholar 

  74. Zhang YJ, Wu XH, Lu BB, Zhao SX, Chen JY, Jia MY, Zhang CS, Wang L, Wang XW, Chen YZ, Mei JW, Taniguchi T, Mingyuan H, Watanabe K, Yan HG, Liu QH, Huang L, Zhao Y, Huang MY. Magnetic order-induced polarization anomaly of Raman scattering in 2D magnet CrI3. Nano Lett. 2019;20(1):729.

    CAS  Google Scholar 

  75. Seyler KL, Zhong D, Klein DR, Gao SY, Zhang XO, Huang B, Navarro-Moratalla E, Yang L, Cobden DH, McGuire MA, Yao W, Xiao D, Jarillo-Herrero P, Xu XD. Ligand-field helical luminescence in a 2D ferromagnetic insulator. Nat Phys. 2018;14(3):277.

    CAS  Google Scholar 

  76. Thiel L, Wang Z, Tschudin MA, Rohner D, Gutiérrez-Lezama I, Ubrig N, Gibertini M, Giannini E, Morpurgo AF, Maletinsky P. Probing magnetism in 2D materials at the nanoscale with single-spin microscopy. Science. 2019;364(6444):973.

    CAS  Google Scholar 

  77. Niu B, Su T, Francisco BA, Ghosh S, Kargar F, Huang X, Lohmann M, Li JY, Xu YD, Taniguchi T, Watanabe K, Wu D, Balandin A, Shi J, Cui YT. Coexistence of magnetic orders in two-dimensional magnet CrI3. Nano Lett. 2020;20(1):553.

    CAS  Google Scholar 

  78. Andrei EY, MacDonald AH. Graphene bilayers with a twist. Nat Mater. 2020;19(12):1265.

    CAS  Google Scholar 

  79. Heinze S, Bode M, Kubetzka A, Pietzsch O, Nie X, Blügel S, Wiesendanger R. Real-space imaging of two-dimensional antiferromagnetism on the atomic scale. Science. 2000;288(5472):1805.

    CAS  Google Scholar 

  80. Xu Y, Ray A, Shao YT, Jiang SW, Lee KH, Weber D, Goldberger JE, Watanabe K, Taniguchi T, Muller DA, Mak KF, Shan J. Coexisting ferromagnetic–antiferromagnetic state in twisted bilayer CrI3. Nat Nanotechnol. 2021. https://doi.org/10.1038/s41565-021-01014-y.

    Article  Google Scholar 

  81. Song TC, Sun QC, Anderson E, Wang C, Qian JM, Taniguchi T, Watanabe K, McGuire Michael A, Stöhr R, Xiao D, Cao T, Wrachtrup J, Xu XD. Direct visualization of magnetic domains and moiré magnetism in twisted 2D magnets. Science. 2021;374(6571):1140.

    CAS  Google Scholar 

  82. Xiao FP, Chen KQ, Tong QJ. Magnetization textures in twisted bilayer CrX3 (X=Br, I). Phys Rev Res. 2021;3(1):013027.

    CAS  Google Scholar 

  83. Geim AK, Dubonos SV, Lok JGS, Grigorieva IV, Maan JC, Hansen LT, Lindelof PE. Ballistic Hall micromagnetometry. Appl Phys Lett. 1997;71(16):2379.

    CAS  Google Scholar 

  84. Geim AK, Grigorieva IV, Dubonos SV, Lok JGS, Maan JC, Filippov AE, Peeters FM. Phase transitions in individual sub-micrometre superconductors. Nature. 1997;390(6657):259.

    CAS  Google Scholar 

  85. Kim M, Kumaravadivel P, Birkbeck J, Kuang W, Xu SG, Hopkinson DG, Knolle J, McClarty PA, Berdyugin AI, Ben Shalom M, Gorbachev RV, Haigh SJ, Liu S, Edgar JH, Novoselov KS, Grigorieva IV, Geim AK. Micromagnetometry of two-dimensional ferromagnets. Nat Electron. 2019;2(10):457.

    CAS  Google Scholar 

  86. Ali MN, Xiong J, Flynn S, Tao J, Gibson QD, Schoop LM, Liang T, Haldolaarachchige N, Hirschberger M, Ong NP, Cava RJ. Large, non-saturating magnetoresistance in WTe2. Nature. 2014;514(7521):205.

    CAS  Google Scholar 

  87. Wolf SA, Awschalom DD, Buhrman RA, Daughton JM, von Molnár S, Roukes ML, Chtchelkanova AY, Treger DM. Spintronics: a spin-based electronics vision for the future. Science. 2001;294(5546):1488.

    CAS  Google Scholar 

  88. Wang Z, Gibertini M, Dumcenco D, Taniguchi T, Watanabe K, Giannini E, Morpurgo AF. Determining the phase diagram of atomically thin layered antiferromagnet CrCl3. Nat Nanotechnol. 2019;14(12):1116.

    Google Scholar 

  89. Song T, Tu MWY, Carnahan C, Cai XH, Taniguchi T, Watanabe K, McGuire MA, Cobden DH, Xiao D, Yao W, Xu XD. Voltage control of a van der Waals spin-filter magnetic tunnel junction. Nano Lett. 2019;19(2):915.

    CAS  Google Scholar 

  90. Klein DR, MacNeill D, Lado JL, Soriano D, Navarro-Moratalla E, Watanabe K, Taniguchi T, Manni S, Canfield P, Fernández-Rossier J, Jarillo-Herrero P. Probing magnetism in 2D van der Waals crystalline insulators via electron tunneling. Science. 2018;360(6394):1218.

    CAS  Google Scholar 

  91. Kim HH, Yang BW, Tian SJ, Li CH, Miao GX, Lei HC, Tsen AW. Tailored tunnel magnetoresistance response in three ultrathin chromium trihalides. Nano Lett. 2019;19(8):5739.

    CAS  Google Scholar 

  92. Kim HH, Yang BW, Patel T, Sfigakis F, Li CH, Tian SJ, Lei HC, Tsen AW. One million percent tunnel magnetoresistance in a magnetic van der waals heterostructure. Nano Lett. 2018;18(8):4885.

    CAS  Google Scholar 

  93. Wang Z, Gutiérrez-Lezama I, Ubrig N, Kroner M, Gibertini M, Taniguchi T, Watanabe K, Imamoğlu A, Giannini E, Morpurgo AF. Very large tunneling magnetoresistance in layered magnetic semiconductor CrI3. Nat Commun. 2018;9(1):2516.

    Google Scholar 

  94. Paudel TR, Tsymbal EY. Spin filtering in CrI3 tunnel junctions. ACS Appl Mater Inter. 2019;11(17):15781.

    CAS  Google Scholar 

  95. Jiang PH, Li L, Liao ZL, Zhao YX, Zhong ZC. Spin direction-controlled electronic band structure in two-dimensional ferromagnetic CrI3. Nano Lett. 2018;18(6):3844.

    CAS  Google Scholar 

  96. Miao GX, Müller M, Moodera JS. Magnetoresistance in double spin filter tunnel junctions with nonmagnetic electrodes and its unconventional bias dependence. Phys Rev Lett. 2009;102(7):076601.

  97. Zheng FW, Zhao JZ, Liu Z, Li ML, Zhou M, Zhang SB, Zhang P. Tunable spin states in the two-dimensional magnet CrI3. Nanoscale. 2018;10(29):14298.

    CAS  Google Scholar 

  98. Subhan F, Khan I, Hong JS. Pressure-induced ferromagnetism and enhanced perpendicular magnetic anisotropy of bilayer CrI3. J Phys: Condens Matter. 2019;31(35):355001.

  99. Wu ZW, Yu J, Yuan SJ. Strain-tunable magnetic and electronic properties of monolayer CrI3. Phys Chem Chem Phys. 2019;21(15):7750.

    CAS  Google Scholar 

  100. Matsukura F, Tokura Y, Ohno H. Control of magnetism by electric fields. Nat Nanotechnol. 2015;10(3):209.

    CAS  Google Scholar 

  101. Suárez Morell E, León A, Miwa RH, Vargas P, Control of magnetism in bilayer CrI3 by an external electric field. 2D Mater. 2019;6(2):025020.

  102. Liu J, Shi MC, Lu JW, Anantram MP. Analysis of electrical-field-dependent Dzyaloshinskii-Moriya interaction and magnetocrystalline anisotropy in a two-dimensional ferromagnetic monolayer. Phys Rev B. 2018;97(5):054416.

    CAS  Google Scholar 

  103. Meiklejohn WH, Bean CP. New magnetic anisotropy. Phys Rev. 1956;102(5):1413.

    Google Scholar 

  104. Zhu R, Zhang W, Shen W, Wong PKJ, Wang QX, Liang QJ, Tian Z, Zhai Y, Qiu CW, Wee ATS. Exchange bias in van der Waals CrCl3/Fe3GeTe2 heterostructures. Nano Lett. 2020;20(7):5030.

    CAS  Google Scholar 

  105. Zhang W, Wong PKJ, Zhu R, Wee ATS. Van der Waals magnets: wonder building blocks for two-dimensional spintronics? InfoMat. 2019;1(4):479.

    CAS  Google Scholar 

  106. Srivastava PK, Hassan Y, Ahn H, Kang B, Jung SG, Gebredingle Y, Joe M, Abbas MS, Park T, Park JG, Lee KJ, Lee C. Exchange bias effect in ferro-/antiferromagnetic van der Waals heterostructures. Nano Lett. 2020;20(5):3978.

    CAS  Google Scholar 

  107. Fu HX, Liu CX, Yan BH. Exchange bias and quantum anomalous Hall effect in the MnBi2Te4/CrI3 heterostructure. Sci Adv. 2020;6(10):eaaz0948.

  108. Behera SK, Bora M, Paul Chowdhury SS, Deb P. Proximity effects in graphene and ferromagnetic CrBr3 van der Waals heterostructures. Phys Chem Chem Phys. 2019;21(46):25788.

    CAS  Google Scholar 

  109. Farooq MU, Hong J, Switchable valley splitting by external electric field effect in graphene/CrI3 heterostructures. NPJ 2D Mater Appl. 2019;3(1):3.

  110. Tang CL, Zhang ZW, Lai S, Tan QH, Gao WB. Magnetic proximity effect in graphene/CrBr3 van der Waals heterostructures. Adv Mater. 2020;32(16):1908498.

    CAS  Google Scholar 

  111. Zhang HS, Yang WJ, Ning YH, Xu XH. Abundant valley-polarized states in two-dimensional ferromagnetic van der Waals heterostructures. Phys Rev B. 2020;101(20):205404.

    CAS  Google Scholar 

  112. Zhang ZY, Ni XJ, Huang HQ, Hu L, Liu F. Valley splitting in the van der Waals heterostructure WSe2/CrI3: the role of atom superposition. Phys Rev B. 2019;99(11):115441.

    CAS  Google Scholar 

  113. Zhong D, Seyler KL, Linpeng X, Cheng R, Sivadas N, Huang B, Schmidgall E, Taniguchi T, Watanabe K, McGuire MA, Yao W, Xiao D, Fu KMC, Xu XD. Van der Waals engineering of ferromagnetic semiconductor heterostructures for spin and valleytronics. Sci Adv. 2017;3(5):e1603113.

    Google Scholar 

  114. Zhong D, Seyler KL, Linpeng X, Wilson NP, Taniguchi T, Watanabe K, McGuire MA. Fu KMC, Xiao D, Yao W, Xu XD, Layer-resolved magnetic proximity effect in van der Waals heterostructures. Nat Nanotechnol. 2020;15(3):187.

    CAS  Google Scholar 

  115. Seyler KL, Zhong D, Huang B, Linpeng X, Wilson NP, Taniguchi T, Watanabe K, Yao W, Xiao D, McGuire MA, Fu KMC, Xu XD. Valley manipulation by optically tuning the magnetic proximity effect in WSe2/CrI3 heterostructures. Nano Lett. 2018;18(6):3823.

    CAS  Google Scholar 

  116. Ciorciaro L, Kroner M, Watanabe K, Taniguchi T, Imamoglu A. Observation of magnetic proximity effect using resonant optical spectroscopy of an electrically tunable MoSe2/CrBr3 heterostructure. Phys Rev Lett. 2020;124(19):197401.

    CAS  Google Scholar 

  117. Ge M, Su Y, Wang H, Yang GH, Zhang JF. Interface depended electronic and magnetic properties of vertical CrI3/WSe2 heterostructures. RSC Adv. 2019;9(26):14766.

    CAS  Google Scholar 

  118. Chen XR, Chen W, Shao LB, Xing DY. Engineering chiral edge states in two-dimensional topological insulator/ferromagnetic insulator heterostructures. Phys Rev B. 2019;99(8):085417.

    CAS  Google Scholar 

  119. Hou YS, Kim J, Wu RQ. Magnetizing topological surface states of Bi2Se3 with a CrI3 monolayer. Sci Adv;5(5):eaaw1874.

  120. Zhao WJ, Fei ZY, Song TC, Choi HK, Palomaki T, Sun BS, Malinowski P, McGuire MA, Chu JH, Xu XD, Cobden DH. Magnetic proximity and nonreciprocal current switching in a monolayer WTe2 helical edge. Nat Mater. 2020;19(5):503.

    CAS  Google Scholar 

  121. Weng XJ, Zhao GP, Tang H, Shen LC, Xiao Y. Thickness-dependent coercivity mechanism and hysteresis loops in hard/soft magnets. Rare Met. 2020;39(1):22.

    CAS  Google Scholar 

  122. Wang FK, Zhai TY. Towards scalable van der Waals heterostructure arrays. Rare Met. 2020;39(4):327.

    Google Scholar 

  123. Song HZ, Wu H, Ren TQ, Yan SC, Chen TH, Shi Y. Developments in stability and passivation strategies for black phosphorus. Nano Res. 2021;14(12):4386.

    CAS  Google Scholar 

  124. Zhu WX, Song C, Han L, Bai H, Wang Q, Yin S, Huang L, Chen TJ, Pan F. Interface-enhanced ferromagnetism with long-distance effect in van der Waals semiconductor. Adv Funct Mater. 2021. https://doi.org/10.1002/adfm.202108953.

    Article  Google Scholar 

  125. Li B, Wan Z, Wang C, Chen P, Huang B, Cheng X, Qian Q, Li J, Zhang ZW, Sun GZ, Zhao B, Ma HF, Wu RX, Wei ZM, Liu Y, Liao L, Ye Y, Huang Y, Xu XD, Duan XD, Ji W, Duan XF. Van der Waals epitaxial growth of air-stable CrSe2 nanosheets with thickness-tunable magnetic order. Nat Mater. 2021;20(6):818.

    CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Key R&D Program of China (No. 2017YFA0206301), the National Natural Science Foundation of China (Nos. 51631001 and 52027801), the Natural Science Foundation of Beijing Municipality (No. 2191001) and the China-German Collaboration Project (No. M-0199).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang-Long Hou.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, B., Zeng, Y., Zhao, ZJ. et al. Magnetic two-dimensional chromium trihalides: structure, properties and modulation. Rare Met. 41, 2921–2942 (2022). https://doi.org/10.1007/s12598-022-02004-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-022-02004-2

Keywords

Navigation