Skip to main content
Log in

Recent developments on 2D magnetic materials: challenges and opportunities

  • Review
  • Published:
Emergent Materials Aims and scope Submit manuscript

Abstract

The emergence of two-dimensional (2D) magnetic materials exhibiting strong magnetization at ultrathin limits above room temperature is promising for miniaturization of devices beyond Moore’s law for future energy efficient nanoelectronic devices. Here, the current status, different mechanisms for the existence of magnetism, spin current injection, and other magnetic properties of monolayer to few layers of various 2D magnetic materials are reviewed. Some of the promising applications of these materials are spintronics devices such as spin valves, spin tunnel field-effect transistors, and spin-filtering magnetic tunnel junctions. Due to the tunable electronic properties of these 2D materials, it is quite interesting to inject the spin current with suitable ferromagnetic contacts. For instance, black phosphorus is a layered material with a small Schottky barrier height capable of injecting spin current. This review includes many recently explored 2D magnetic materials ranging from exfoliated 2D crystals to CVD grown materials from single to several layers, demonstrating tunable layer-dependent magnetic properties. We also explore some of the promising theoretical study based on 2D magnetic compounds such as 2D alkali-based chromium chalcogenides, which shows ferromagnetic as well as semiconducting behavior. The layer-dependent magnetic ordering has been observed in layered compounds like 1T-CrTe2, VSe2, CrI3, and Fe3GeTe2, which have great potential for the future applications in magnetic-based electronic devices. Finally, we emphasize the challenges, opportunities, and future directions of the 2D magnetic materials, where new discoveries might have outstanding impact in transformational scientific breakthroughs towards memory, spintronics, optoelectronics, and other multifunctional device applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12.
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Spaldin NA, Magnetic materials: fundamentals and applications. (Cambridge university press, 2010)

  2. Cullity BD and Graham CD, Introduction to magnetic materials. (John Wiley & Sons, 2011)

  3. S. Kumari, N. Mottaghi, C.-Y. Huang, R. Trappen, G. Bhandari, S. Yousefi, G. Cabrera, M.S. Seehra, M.B. Holcomb, Sci. Rep. 10(1), 1–11 (2020)

    Article  CAS  Google Scholar 

  4. G.E. Bauer, E. Saitoh, B.J. Van Wees, Nat. Mater. 11(5), 391–399 (2012)

    Article  CAS  Google Scholar 

  5. S. Wolf, D. Awschalom, R. Buhrman, J. Daughton, v.S. von Molnár, M. Roukes, A.Y. Chtchelkanova, D. Treger, Sci. 294(5546), 1488–1495 (2001)

    Article  CAS  Google Scholar 

  6. R. Comstock, J. Mater. Sci. Mater. Electron. 13(9), 509–523 (2002)

    Article  CAS  Google Scholar 

  7. D.K. Pradhan, S. Kumari, L. Li, R.K. Vasudevan, P.T. Das, V.S. Puli, D.K. Pradhan, A. Kumar, P. Misra, A. Pradhan, Studies on dielectric, optical, magnetic, magnetic domain structure, and resistance switching characteristics of highly c-axis oriented NZFO thin films. J. Appl. Phys. 122(3), 033902 (2017)

    Article  CAS  Google Scholar 

  8. D.K. Pradhan, S. Kumari, V.S. Puli, P.T. Das, D.K. Pradhan, A. Kumar, J.F. Scott, R.S. Katiyar, Correlation of dielectric, electrical and magnetic properties near the magnetic phase transition temperature of cobalt zinc ferrite. Phys. Chem. Chem. Phys. 19(1), 210–218 (2017)

    Article  CAS  Google Scholar 

  9. D.K. Pradhan, P. Misra, V.S. Puli, S. Sahoo, D.K. Pradhan, R.S. Katiyar, Studies on structural, dielectric, and transport properties of Ni0.65Zn0.35Fe2O4. J. Appl. Phys. 115(24), 243904 (2014)

    Article  CAS  Google Scholar 

  10. McCurrie RA, Ferromagnetic materials: structure and properties. (Academic Press, 1994)

  11. W. Kleemann, C. Binek, Multiferroic and Magnetoelectric Materials. Springer Tracts Mod. Phys. 246, 163 (2013)

    Article  CAS  Google Scholar 

  12. D.K. Pradhan, S. Kumari, P.D. Rack, Magnetoelectric Composites: Applications, Coupling Mechanisms, and Future Directions. Nanomaterials 10(10), 2072 (2020)

    Article  CAS  Google Scholar 

  13. Colwell R, presented at the 2013 IEEE Hot Chips 25 Symposium (HCS), 2013 (unpublished)

  14. H.N. Khan, D.A. Hounshell, E.R. Fuchs, Science and research policy at the end of Moore’s law. Nat. Electron. 1(1), 14–21 (2018)

    Article  Google Scholar 

  15. N. Pradhan, D. Rhodes, S. Memaran, J. Poumirol, D. Smirnov, S. Talapatra, S. Feng, N. Perea-Lopez, A. Elias, M. Terrones, Sci. Rep. 5(1), 1–8 (2015)

    Google Scholar 

  16. D. Akinwande, C.J. Brennan, J.S. Bunch, P. Egberts, J.R. Felts, H. Gao, R. Huang, J.-S. Kim, T. Li, Y. Li, A review on mechanics and mechanical properties of 2D materials—Graphene and beyond. Extreme Mech. Lett. 13, 42–77 (2017)

    Article  Google Scholar 

  17. J.R. Schaibley, H. Yu, G. Clark, P. Rivera, J.S. Ross, K.L. Seyler, W. Yao, X. Xu, Nat. Rev. Mater. 1(11), 1–15 (2016)

    Article  CAS  Google Scholar 

  18. R. Mas-Balleste, C. Gomez-Navarro, J. Gomez-Herrero, F. Zamora, 2D materials: to graphene and beyond. Nanoscale 3(1), 20–30 (2011)

    Article  CAS  Google Scholar 

  19. N.R. Pradhan, C. Garcia, B. Isenberg, D. Rhodes, S. Feng, S. Memaran, Y. Xin, A. McCreary, A.R.H. Walker, A. Raeliarijaona, Sci. Rep. 8(1), 1–10 (2018)

    Google Scholar 

  20. N.R. Pradhan, A. McCreary, D. Rhodes, Z. Lu, S. Feng, E. Manousakis, D. Smirnov, R. Namburu, M. Dubey, A.R.H. Walker, Nano Lett. 15(12), 8377–8384 (2015)

    Article  CAS  Google Scholar 

  21. K. Novoselov, o.A. Mishchenko, o.A. Carvalho, A.C. Neto, Sci. 353(6298) (2016)

  22. N.R. Pradhan, Z. Lu, D. Rhodes, D. Smirnov, E. Manousakis, L. Balicas, An Optoelectronic Switch Based on Intrinsic Dual Schottky Diodes in Ambipolar MoSe2Field-Effect Transistors. Adv. Electron. Mater. 1(11), 1500215 (2015)

    Article  CAS  Google Scholar 

  23. N.R. Pradhan, D. Rhodes, Y. Xin, S. Memaran, L. Bhaskaran, M. Siddiq, S. Hill, P.M. Ajayan, L. Balicas, Ambipolar Molybdenum Diselenide Field-Effect Transistors: Field-Effect and Hall Mobilities. ACS Nano 8(8), 7923–7929 (2014)

    Article  CAS  Google Scholar 

  24. N.R. Pradhan, D. Rhodes, S. Feng, Y. Xin, S. Memaran, B.-H. Moon, H. Terrones, M. Terrones, L. Balicas, ACS Nano 8(6), 5911–5920 (2014)

    Article  CAS  Google Scholar 

  25. S.J. Liang, B. Cheng, X. Cui, F. Miao, Adv. Mater., 1903800 (2019)

  26. B. Sachs, T. Wehling, K. Novoselov, A. Lichtenstein, M. Katsnelson, Ferromagnetic two-dimensional crystals: Single layers of K2CuF4. Phys. Rev. B 88(20), 201402 (2013)

    Article  CAS  Google Scholar 

  27. M.C. Wang, C.C. Huang, C.H. Cheung, C.Y. Chen, S.G. Tan, T.W. Huang, Y. Zhao, Y. Zhao, G. Wu, Y.P. Feng, Prospects and Opportunities of 2D van der Waals Magnetic Systems. Ann. Phys. 532(5), 1900452 (2020)

    Article  Google Scholar 

  28. T. Zhao, J. Zhou, Q. Wang, Y. Kawazoe, P. Jena, Ferromagnetic and Half-Metallic FeC2Monolayer Containing C2Dimers. ACS Appl. Mater. Interfaces 8(39), 26207–26212 (2016)

    Article  CAS  Google Scholar 

  29. V.P. Ningrum, B. Liu, W. Wang, Y. Yin, Y. Cao, C. Zha, H. Xie, X. Jiang, Y. Sun, S. Qin, Res. 2020 (2020)

  30. T. Song, X. Cai, M.W.-Y. Tu, X. Zhang, B. Huang, N.P. Wilson, K.L. Seyler, L. Zhu, T. Taniguchi, K. Watanabe, Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures. Sci. 360(6394), 1214–1218 (2018)

    Article  CAS  Google Scholar 

  31. A.K. Geim, I.V. Grigorieva, Van der Waals heterostructures. Nat. 499(7459), 419–425 (2013)

    Article  CAS  Google Scholar 

  32. X. Xi, L. Zhao, Z. Wang, H. Berger, L. Forró, J. Shan, K.F. Mak, Nat. Nanotechnol. 10(9), 765–769 (2015)

    Article  CAS  Google Scholar 

  33. B. Chen, J. Yang, H. Wang, M. Imai, H. Ohta, C. Michioka, K. Yoshimura, M. Fang, Magnetic Properties of Layered Itinerant Electron Ferromagnet Fe3GeTe2. J. Phys. Soc. Jpn. 82(12), 124711 (2013)

    Article  CAS  Google Scholar 

  34. C. Gong, L. Li, Z. Li, H. Ji, A. Stern, Y. Xia, T. Cao, W. Bao, C. Wang, Y. Wang, Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nat. 546(7657), 265–269 (2017)

    Article  CAS  Google Scholar 

  35. B. Shabbir, M. Nadeem, Z. Dai, M.S. Fuhrer, Q.-K. Xue, X. Wang, Q. Bao, Long range intrinsic ferromagnetism in two dimensional materials and dissipationless future technologies. Appl. Phys. Rev. 5(4), 041105 (2018)

    Article  CAS  Google Scholar 

  36. S. Zhang, Y. Li, T. Zhao, Q. Wang, Sci. Rep. 4, 5241 (2014)

    Article  CAS  Google Scholar 

  37. C. Tan, J. Lee, S.-G. Jung, T. Park, S. Albarakati, J. Partridge, M.R. Field, D.G. McCulloch, L. Wang, C. Lee, Nat. Commun. 9(1), 1–7 (2018)

    Article  CAS  Google Scholar 

  38. K. Zhang, R. Khan, H. Guo, I. Ali, X. Li, Y. Lin, H. Chen, W. Yan, X. Wu, L. Song, Room-temperature ferromagnetism in the two-dimensional layered Cu2MoS4nanosheets. Phys. Chem. Chem. Phys. 19(3), 1735–1739 (2017)

    Article  CAS  Google Scholar 

  39. P. Huang, P. Zhang, S. Xu, H. Wang, X. Zhang, H. Zhang, Recent advances in two-dimensional ferromagnetism: materials synthesis, physical properties and device applications. Nanoscale 12(4), 2309–2327 (2020)

    Article  CAS  Google Scholar 

  40. M. Bonilla, S. Kolekar, Y. Ma, H.C. Diaz, V. Kalappattil, R. Das, T. Eggers, H.R. Gutierrez, M.-H. Phan, M. Batzill, Nat. Nanotechnol. 13(4), 289–293 (2018)

    Article  CAS  Google Scholar 

  41. N.D. Mermin, H. Wagner, Absence of Ferromagnetism or Antiferromagnetism in One- or Two-Dimensional Isotropic Heisenberg Models. Phys. Rev. Lett. 17(22), 1133–1136 (1966)

    Article  CAS  Google Scholar 

  42. P.C. Hohenberg, Existence of Long-Range Order in One and Two Dimensions. Phys. Rev. 158(2), 383–386 (1967)

    Article  CAS  Google Scholar 

  43. B. Huang, G. Clark, E. Navarro-Moratalla, D.R. Klein, R. Cheng, K.L. Seyler, D. Zhong, E. Schmidgall, M.A. McGuire, D.H. Cobden, Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nat. 546(7657), 270–273 (2017)

    Article  CAS  Google Scholar 

  44. M.-G. Han, J.A. Garlow, Y. Liu, H. Zhang, J. Li, D. DiMarzio, M.W. Knight, C. Petrovic, D. Jariwala, Y. Zhu, Topological Magnetic-Spin Textures in Two-Dimensional van der Waals Cr2Ge2Te6. Nano Lett. 19(11), 7859–7865 (2019)

    Article  CAS  Google Scholar 

  45. W. Xu, S. Ali, Y. Jin, X. Wu, H. Xu, Intrinsic Ferromagnetic Semiconductors in Two-Dimensional Alkali-Based Chromium Chalcogenides. ACS Appl. Electron. Mater. 2(12), 3853–3858 (2020)

    Article  CAS  Google Scholar 

  46. C. Wang, X. Zhou, L. Zhou, N.-H. Tong, Z.-Y. Lu, W. Ji, A family of high-temperature ferromagnetic monolayers with locked spin-dichroism-mobility anisotropy: MnNX and CrCX (X = Cl, Br, I; C = S, Se, Te). Sci. Bull. 64(5), 293–300 (2019)

    Article  CAS  Google Scholar 

  47. Zhou J, Feng YP and Shen L, arXiv preprint arXiv:1904.04952 (2019)

  48. J. He, S. Li, Two-dimensional Janus transition-metal dichalcogenides with intrinsic ferromagnetism and half-metallicity. Comput. Mater. Sci. 152, 151–157 (2018)

    Article  CAS  Google Scholar 

  49. N. Miao, B. Xu, L. Zhu, J. Zhou, Z. Sun, 2D Intrinsic Ferromagnets from van der Waals Antiferromagnets. J. Am. Chem. Soc. 140(7), 2417–2420 (2018)

    Article  CAS  Google Scholar 

  50. Y. Guo, Y. Zhang, S. Yuan, B. Wang, J. Wang, Chromium sulfide halide monolayers: intrinsic ferromagnetic semiconductors with large spin polarization and high carrier mobility. Nanoscale 10(37), 18036–18042 (2018)

    Article  CAS  Google Scholar 

  51. A.S. Botana, M.R. Norman, Electronic structure and magnetism of transition metal dihalides: Bulk to monolayer. Phys. Rev. Mater. 3(4), 044001 (2019)

    Article  CAS  Google Scholar 

  52. W.-B. Zhang, Q. Qu, P. Zhu, C.-H. Lam, Robust intrinsic ferromagnetism and half semiconductivity in stable two-dimensional single-layer chromium trihalides. J. Mater. Chem. C 3(48), 12457–12468 (2015)

    Article  CAS  Google Scholar 

  53. H.-R. Fuh, C.-R. Chang, Y.-K. Wang, R.F. Evans, R.W. Chantrell, H.-T. Jeng, Sci. Rep. 6, 32625 (2016)

    Article  CAS  Google Scholar 

  54. Y. Ren, Y. Ge, W. Wan, Q. Li, Y. Liu, J. Phys. Condens. Matter 32(1), 015701 (2019)

    Article  Google Scholar 

  55. V.V. Kulish, W. Huang, Single-layer metal halides MX2(X = Cl, Br, I): stability and tunable magnetism from first principles and Monte Carlo simulations. J. Mater. Chem. C 5(34), 8734–8741 (2017)

    Article  CAS  Google Scholar 

  56. M. Kan, S. Adhikari, Q. Sun, Ferromagnetism in MnX2 (X = S, Se) monolayers. Phys. Chem. Chem. Phys. 16(10), 4990–4994 (2014)

    Article  CAS  Google Scholar 

  57. H. Lv, W. Lu, D. Shao, Y. Liu, Y. Sun, Strain-controlled switch between ferromagnetism and antiferromagnetism in1T−CrX2(X=Se, Te) monolayers. Phys. Rev. B 92(21), 214419 (2015)

    Article  CAS  Google Scholar 

  58. H.L. Zhuang, Y. Xie, P. Kent, P. Ganesh, Computational discovery of ferromagnetic semiconducting single-layerCrSnTe3. Phys. Rev. B 92(3), 035407 (2015)

    Article  CAS  Google Scholar 

  59. M.M. Otrokov, I.P. Rusinov, M. Blanco-Rey, M. Hoffmann, A.Y. Vyazovskaya, S.V. Eremeev, A. Ernst, P.M. Echenique, A. Arnau, E.V. Chulkov, Unique Thickness-Dependent Properties of the van der Waals Interlayer AntiferromagnetMnBi2Te4Films. Phys. Rev. Lett. 122(10), 107202 (2019)

    Article  CAS  Google Scholar 

  60. L. Webster, J.-A. Yan, Strain-tunable magnetic anisotropy in monolayerCrCl3,CrBr3, andCrI3. Phys. Rev. B 98(14), 144411 (2018)

    Article  CAS  Google Scholar 

  61. J. He, S. Ma, P. Lyu, P. Nachtigall, Unusual Dirac half-metallicity with intrinsic ferromagnetism in vanadium trihalide monolayers. J. Mater. Chem. C 4(13), 2518–2526 (2016)

    Article  CAS  Google Scholar 

  62. Q. Sun, N. Kioussis, Prediction of manganese trihalides as two-dimensional Dirac half-metals. Phys. Rev. B 97(9), 094408 (2018)

    Article  CAS  Google Scholar 

  63. C. Zhang, Y. Nie, S. Sanvito, A. Du, Nano Lett. 19(2), 1366–1370 (2019)

    Article  CAS  Google Scholar 

  64. X. Sun, W. Li, X. Wang, Q. Sui, T. Zhang, Z. Wang, L. Liu, D. Li, S. Feng, S. Zhong, Room temperature ferromagnetism in ultra-thin van der Waals crystals of 1T-CrTe2. Nano Res. 13(12), 3358–3363 (2020)

    Article  CAS  Google Scholar 

  65. L. Meng, Z. Zhou, M. Xu, S. Yang, K. Si, L. Liu, X. Wang, H. Jiang, B. Li, P. Qin, Nat. Commun. 12(1), 1–8 (2021)

    Article  CAS  Google Scholar 

  66. N. Nakajima, T. Koide, T. Shidara, H. Miyauchi, H. Fukutani, A. Fujimori, K. Iio, T. Katayama, M. Nývlt, Y. Suzuki, Perpendicular Magnetic Anisotropy Caused by Interfacial Hybridization via Enhanced Orbital Moment inCo/PtMultilayers: Magnetic Circular X-Ray Dichroism Study. Phys. Rev. Lett. 81(23), 5229–5232 (1998)

    Article  CAS  Google Scholar 

  67. H. Li, S. Ruan, Y.J. Zeng, Intrinsic Van Der Waals Magnetic Materials from Bulk to the 2D Limit: New Frontiers of Spintronics. Adv. Mater. 31(27), 1900065 (2019)

    Article  CAS  Google Scholar 

  68. M.V. Kamalakar, B. Madhushankar, A. Dankert, S.P. Dash, Low Schottky Barrier Black Phosphorus Field-Effect Devices with Ferromagnetic Tunnel Contacts. Small 11(18), 2209–2216 (2015)

    Article  CAS  Google Scholar 

  69. L. Li, Y. Yu, G.J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X.H. Chen, Y. Zhang, Nat. Nanotechnol. 9(5), 372 (2014)

    Article  CAS  Google Scholar 

  70. H. Liu, A.T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tománek, P.D. Ye, ACS Nano 8(4), 4033–4041 (2014)

    Article  CAS  Google Scholar 

  71. V. Tran, R. Soklaski, Y. Liang, L. Yang, Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Phys. Rev. B 89(23), 235319 (2014)

    Article  CAS  Google Scholar 

  72. C. Van Bruggen, C. Haas, Magnetic susceptibility and electrical properties of VSe2 single crystals. Solid State Commun. 20(3), 251–254 (1976)

    Article  Google Scholar 

  73. M. Bayard, M. Sienko, J. Solid State Chem. 19(4), 325–329 (1976)

    Article  CAS  Google Scholar 

  74. Y. Ma, Y. Dai, M. Guo, C. Niu, Y. Zhu, B. Huang, ACS Nano 6(2), 1695–1701 (2012)

    Article  CAS  Google Scholar 

  75. N. León-Brito, E.D. Bauer, F. Ronning, J.D. Thompson, R. Movshovich, Magnetic microstructure and magnetic properties of uniaxial itinerant ferromagnet Fe3GeTe2. J. Appl. Phys. 120(8), 083903 (2016)

    Article  CAS  Google Scholar 

  76. H.J. Deiseroth, K. Aleksandrov, C. Reiner, L. Kienle, R.K. Kremer, Eur. J. Inorg. Chem. 2006(8), 1561–1567 (2006)

    Article  CAS  Google Scholar 

  77. N. Sivadas, M.W. Daniels, R.H. Swendsen, S. Okamoto, D. Xiao, Magnetic ground state of semiconducting transition-metal trichalcogenide monolayers. Phys. Rev. B 91(23), 235425 (2015)

    Article  CAS  Google Scholar 

  78. H. Kumar, N.C. Frey, L. Dong, B. Anasori, Y. Gogotsi, V.B. Shenoy, ACS Nano 11(8), 7648–7655 (2017)

    Article  CAS  Google Scholar 

  79. J. He, P. Lyu, P. Nachtigall, New two-dimensional Mn-based MXenes with room-temperature ferromagnetism and half-metallicity. J. Mater. Chem. C 4(47), 11143–11149 (2016)

    Article  CAS  Google Scholar 

  80. Y. Sun, Z. Zhuo, X. Wu, J. Yang, Nano Lett. 17(5), 2771–2777 (2017)

    Article  CAS  Google Scholar 

  81. Y. Zhang, J. Pang, M. Zhang, X. Gu, L. Huang, Sci. Rep. 7(1), 1–8 (2017)

    Article  CAS  Google Scholar 

  82. X. Li, J. Yang, CrXTe3(X = Si, Ge) nanosheets: two dimensional intrinsic ferromagnetic semiconductors. J. Mater. Chem. C 2(34), 7071–7076 (2014)

    Article  CAS  Google Scholar 

  83. H.L. Zhuang, R.G. Hennig, Stability and magnetism of strongly correlated single-layerVS2. Phys. Rev. B 93(5), 054429 (2016)

    Article  CAS  Google Scholar 

  84. M.-W. Lin, H.L. Zhuang, J. Yan, T.Z. Ward, A.A. Puretzky, C.M. Rouleau, Z. Gai, L. Liang, V. Meunier, B.G. Sumpter, Ultrathin nanosheets of CrSiTe3: a semiconducting two-dimensional ferromagnetic material. J. Mater. Chem. C 4(2), 315–322 (2016)

    Article  CAS  Google Scholar 

  85. Y. Yue, Fe 2 C monolayer: An intrinsic ferromagnetic MXene. J. Magn. Magn. Mater. 434, 164–168 (2017)

    Article  CAS  Google Scholar 

  86. M. Yu, X. Liu, W. Guo, Novel two-dimensional ferromagnetic semiconductors: Ga-based transition-metal trichalcogenide monolayers. Phys. Chem. Chem. Phys. 20(9), 6374–6382 (2018)

    Article  CAS  Google Scholar 

  87. Y. Zhang, F. Li, Robust half-metallic ferromagnetism in Cr 3 C 2 MXene. J. Magn. Magn. Mater. 433, 222–226 (2017)

    Article  CAS  Google Scholar 

  88. J. He, X. Li, P. Lyu, P. Nachtigall, Near-room-temperature Chern insulator and Dirac spin-gapless semiconductor: nickel chloride monolayer. Nanoscale 9(6), 2246–2252 (2017)

    Article  CAS  Google Scholar 

  89. C. Huang, J. Zhou, H. Wu, K. Deng, P. Jena, E. Kan, Quantum anomalous Hall effect in ferromagnetic transition metal halides. Phys. Rev. B 95(4), 045113 (2017)

    Article  Google Scholar 

  90. J. Yi, H. Zhuang, Q. Zou, Z. Wu, G. Cao, S. Tang, S. Calder, P. Kent, D. Mandrus, Z. Gai, 2D Mater. 4(1), 011005 (2016)

    Article  CAS  Google Scholar 

  91. S. Liu, X. Yuan, Y. Zou, Y. Sheng, C. Huang, E. Zhang, J. Ling, Y. Liu, W. Wang, C. Zhang, npj 2D Mater. Appl. 1(1), 1–7 (2017)

    Article  CAS  Google Scholar 

  92. Z. Wang, D. Sapkota, T. Taniguchi, K. Watanabe, D. Mandrus, A.F. Morpurgo, Nano Lett. 18(7), 4303–4308 (2018)

    Article  CAS  Google Scholar 

  93. S. Jiang, L. Li, Z. Wang, J. Shan, K.F. Mak, Spin tunnel field-effect transistors based on two-dimensional van der Waals heterostructures. Nat. Electron. 2(4), 159–163 (2019)

    Article  Google Scholar 

  94. S. Datta, B. Das, Electronic analog of the electro‐optic modulator. Appl. Phys. Lett. 56(7), 665–667 (1990)

    Article  CAS  Google Scholar 

  95. D.D. Awschalom, M.E. Flatté, Nat. Phys. 3(3), 153–159 (2007)

    Article  CAS  Google Scholar 

  96. Y. Liu, H. Wu, H.-C. Cheng, S. Yang, E. Zhu, Q. He, M. Ding, D. Li, J. Guo, N.O. Weiss, Nano Lett. 15(5), 3030–3034 (2015)

    Article  CAS  Google Scholar 

  97. A. Avsar, I.J. Vera-Marun, J.Y. Tan, K. Watanabe, T. Taniguchi, A.H. Castro Neto, B. Ozyilmaz, ACS Nano 9(4), 4138–4145 (2015)

    Article  CAS  Google Scholar 

  98. X. Li, R. Grassi, S. Li, T. Li, X. Xiong, T. Low, Y. Wu, Nano Lett. 18(1), 26–31 (2018)

    Article  CAS  Google Scholar 

  99. N.R. Pradhan, C. Garcia, M.C. Lucking, S. Pakhira, J. Martinez, D. Rosenmann, R. Divan, A.V. Sumant, H. Terrones, J.L. Mendoza-Cortes, Raman and electrical transport properties of few-layered arsenic-doped black phosphorus. Nanoscale 11(39), 18449–18463 (2019)

    Article  CAS  Google Scholar 

  100. X. Cui, G.-H. Lee, Y.D. Kim, G. Arefe, P.Y. Huang, C.-H. Lee, D.A. Chenet, X. Zhang, L. Wang, F. Ye, Nat. Nanotechnol. 10(6), 534–540 (2015)

    Article  CAS  Google Scholar 

  101. Z. Wang, I. Gutiérrez-Lezama, N. Ubrig, M. Kroner, M. Gibertini, T. Taniguchi, K. Watanabe, A. Imamoğlu, E. Giannini, A.F. Morpurgo, Nat. Commun. 9(1), 1–8 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

DKP and PDR acknowledge support from the U.S. Department of Energy (DOE) under Grant No. DE-SC0002136. PDR also acknowledges the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility. NRP acknowledge funding support from NSF-PREM through NSF-DMR # 1826886.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dhiren K. Pradhan.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumari, S., Pradhan, D.K., Pradhan, N.R. et al. Recent developments on 2D magnetic materials: challenges and opportunities. emergent mater. 4, 827–846 (2021). https://doi.org/10.1007/s42247-021-00214-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42247-021-00214-5

Keywords

Navigation