Skip to main content

Advertisement

Log in

A review on photocatalytic systems capable of synchronously utilizing photogenerated electrons and holes

  • Mini Review
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

With the continuous progress and development of current industrial civilization, energy crisis and environmental pollution are serious problems that threaten human beings need to be solved. Photocatalytic technologies that can use clean solar light energy to manufacture clean H2 fuel and high value chemicals provide a feasibility to solve the above problem. However, traditional photocatalytic water splitting mainly focused on the utilization of photogenerated electrons to produce H2 which leads to the waste of the holes. It is vital to develop photocatalysts capable of synchronously utilizing photogenerated electrons and holes for the future practical application. In this paper, the latest progress of photocatalytic system with collaborative photooxidation-reduction application has been summarized, and water splitting for H2 production combining different organic synchronous reaction process has been clarified. Finally, the prospect of photocatalysts capable of synchronously utilizing photogenerated electrons and holes are proposed.

Graphical abstract

摘要

随着当前工业文明的不断进步和发展, 能源危机和环境污染是威胁人类的严重问题, 亟待解决。利用清洁的太阳能将光能转化为清洁的H2燃料和高价值化学品的光催化技术为解决上述问题提供了可行性。然而, 传统的光催化水裂解主要集中在利用光产生的电子来生产H2, 这导致了空穴的浪费。开发能够同步利用光生电子和空穴的光催化剂对未来的实际应用至关重要。本文总结了具有协同光氧化-还原应用的光催化系统的最新进展, 并阐明了结合不同有机同步反应过程的水分裂制氢。最后, 提出了同步利用光生电子和空穴的光催化剂的前景。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Reproduced with permission from Ref. [63]. Copyright 2021, Elsevier

Fig. 4

Reproduced with permission from Ref. [33]. Copyright 2020, Wiley

Fig. 5

Reproduced with permission from Ref. [64]. Copyright 2018, Elsevier

Fig. 6

Reproduced with permission from Ref. [79]. Copyright 2018, American Chemical Society

Fig. 7

Reproduced with permission from Ref. [80]. Copyright 2021, Elsevier

Fig. 8

Reproduced with permission from Ref. [63]. Copyright 2021, Elsevier

Fig. 9

Reproduced with permission from Ref. [84]. Copyright 2020, Elsevier

Fig. 10

Reproduced with permission from Ref. [84]. Copyright 2020, Elsevier

Fig. 11

Reproduced with permission from Ref. [95]. Copyright 2019, Elsevier

Fig. 12

Reproduced with permission from Ref. [96]. Copyright 2021, Elsevier

Fig. 13

Reproduced with permission from Ref. [101]. Copyright 2019, Elsevier

Similar content being viewed by others

References

  1. Tao JN, Yu XH, Liu QQ, Liu GW, Tang H. Internal electric field induced S-scheme heterojunction MoS2/CoAl LDH for enhanced photocatalytic hydrogen evolution. J Colloid Interface Sci. 2021;585:470.

    Article  CAS  Google Scholar 

  2. Yang XF, Liu W, Han CH, Zhao CX, Tang H, Liu QQ, Xu JS. Mechanistic insights into charge carrier dynamics in MoSe2/CdS heterojunctions for boosted photocatalytic hydrogen evolution. Mater Today Phys. 2020;15:100261.

    Article  Google Scholar 

  3. Wang ZM, Shen ZY, Li YM, Zuo JL. Preparation and photoelectrocatalytic performance of Ru loaded TiO2 nanotubes. Chin J Rare Met. 2020;44(6):609.

  4. Zulfiqar S, Liu S, Rahman N, Tang H, Shah S, Yu XH, Liu QQ. Construction of S-scheme MnO2@CdS heterojunction with core–shell structure as H2-production photocatalyst. Rare Met. 2021;40(9):2381.

    Article  CAS  Google Scholar 

  5. Ao YH, Xu LY, Wang PF, Wang C, Hou J, Qian J. Preparation of CdS nanoparticle loaded flower-like Bi2O2CO3 heterojunction photocatalysts with enhanced visible light photocatalytic activity. Dalton Trans. 2015;44(25):11321.

    Article  CAS  Google Scholar 

  6. Yang DX, Qu D, Miao X, Jiang WS, An L, Wen YJ, Wu DD, Sun ZC. TiO2 sensitized by red-, green-, blue-emissive carbon dots for enhanced H2 production. Rare Met. 2019;38(5):404.

    Article  CAS  Google Scholar 

  7. Zhang L, Xiao WP, Zhang Y, Han FY, Yang XF. Nanocarbon encapsulating Ni-doped MoP/graphene composites for highly improved electrocatalytic hydrogen evolution reaction. Compos Commun. 2021;26:100792.

    Article  Google Scholar 

  8. Fiqar Z, Tao N, Yang T, Liu QQ, Hu J, Tang H. Designing 0D/2D CdS nanoparticles/g-C3N4 nanosheets heterojunction as efficient photocatalyst for improved H2-evolution. Surf Interfaces. 2021;26:101312.

    Article  CAS  Google Scholar 

  9. Huang S, Ouyang T, Zheng BF, Dan M, Liu ZQ. Enhanced photoelectrocatalytic activities for CH3OH to HCHO conversion on Fe2O3/MoO3: Fe-O-Mo covalency dominates the intrinsic activity. Angew Chem Int Ed. 2021;60(17):9546.

    Article  CAS  Google Scholar 

  10. Hong XY, Yu XH, Wang LL, Liu QQ, Sun JF, Tang H. Lattice-matched CoP/CoS2 heterostructure cocatalyst to boost photocatalytic H2 generation. Inorg Chem. 2021;60(16):12506.

    Article  CAS  Google Scholar 

  11. Li JY, Ma AQ, Li HF, Dong YH, Gao YQ. Tunable micromorphology and photocatalytic properties of monoclinic BiVO4 prepared by bionic template method. Chin J Rare Met. 2020;44(9):912.

    Google Scholar 

  12. Lu Y, Fan DQ, Wang YD, Xu HL, Lu CH, Yang XF. Surface patterning of two-dimensional nanostructure-embedded photothermal hydrogels for high-yield solar steam generation. ACS Nano. 2021;15(6):10366.

    Article  CAS  Google Scholar 

  13. Sun KH, Shen J, Liu QQ, Tang H, Zhang MY, Zulfiqar S, Lei CS. Synergistic effect of Co(II)-hole and Pt-electron cocatalysts for enhanced photocatalytic hydrogen evolution performance of P-doped g-C3N4. Chin J Catal. 2020;41(1):72.

    Article  CAS  Google Scholar 

  14. Wang CY, Yang CH, Zhang ZC. Unraveling molecular-level mechanisms of reactive facet of carbon nitride single crystals photocatalyzing overall water splitting. Rare Met. 2020;39(12):1353.

    Article  CAS  Google Scholar 

  15. Mu RH, Ao YH, Wu TF, Wang C, Wang P. Synthesis of novel ternary heterogeneous anatase-TiO2 (B) biphase nanowires/Bi4O5I2 composite photocatalysts for the highly efficient degradation of acetaminophen under visible light irradiation. J Hazard Mater. 2020;382(15):121083.

    Article  CAS  Google Scholar 

  16. Meng XF, Wang MX, Hu J, Liu QQ, Tang H. The synergistic effect of P doping and Ni(II) electron cocatalyst boosting photocatalytic H2-evolution activity of g-C3N4. Ceram Int. 2021;47(16):23386.

    Article  CAS  Google Scholar 

  17. Xu HT, Xiao R, Huang JR, Jiang Y, Zhao CX, Yang XF. In situ construction of protonated g-C3N4/Ti3C2 MXene Schottky heterojunctions for efficient photocatalytic hydrogen production. Chin J Catal. 2021;42(1):107.

    Article  Google Scholar 

  18. Huang S, Zheng BF, Tang ZY, Mai XQ, Ouyang T, Liu ZQ. CH3OH selective oxidation to HCHO on Z-scheme Fe2O3/g-C3N4 hybrid: the rate-determining step of C-H bond scission. Chem Eng J. 2021;422:130086.

    Article  CAS  Google Scholar 

  19. Zhang Y, Zhao SM, Su QW, Xu JL. Visible light response ZnO–C3N4 thin film photocatalyst. Rare Met. 2021;40(1):96.

  20. Liu QQ, He XD, Peng JJ, Yu XH, Tang H, Zhang J. Hot-electron-assisted S-scheme heterojunction of tungsten oxide/graphitic carbon nitride for broad-spectrum photocatalytic H2 generation. Chin J Catal. 2021;42(9):1478.

    Article  CAS  Google Scholar 

  21. Li Y, Yan SW, Jia XH, Wu J, Yang J, Zhao CX, Wang SZ, Song HJ, Yang XF. Uncovering the origin of full-spectrum visible-light-responsive polypyrrole supramolecular photocatalysts. Appl Catal B Environ. 2021;287(15):119926.

    Article  CAS  Google Scholar 

  22. Li KY, Chen J, Ao YH, Wang PF. Preparation of a ternary g-C3N4-CdS/Bi4O5I2 composite photocatalysts with two charge transfer pathways for efficient degradation of acetaminophen under visible light irradiation. Sep Purif Technol. 2021;259(15):118177.

    Article  CAS  Google Scholar 

  23. He S, Yan C, Chen XZ, Wang Z, Ouyang T, Guo ML, Liu ZQ. Construction of core-shell heterojunction regulating α-Fe2O3 layer on CeO2 nanotube arrays enables highly efficient Z-scheme photoelectrocatalysis. Appl Catal B Environ. 2020;276(5):119138.

    Article  CAS  Google Scholar 

  24. Ding C, Zhao CX, Cheng S, Yang XF. Mixed-dimensional 1D CdS/2D MoSe2 heterostructures for high-performance photocatalytic hydrogen production. Surf Interfaces. 2021;25:101192.

    Article  CAS  Google Scholar 

  25. Liu QQ, He XD, Tao JN, Tang H, Liu ZQ. Oxygen vacancies induced plasmonic effect for realizing broad-spectrum-driven photocatalytic H2 evolution over an S-scheme CdS/W18O49 heterojunction. ChemNanoMat. 2021;7(1):44.

    Article  CAS  Google Scholar 

  26. Ren ML, Ao YH, Wang PF, Wang C. Construction of silver/graphitic-C3N4/bismuth tantalate Z-scheme photocatalyst with enhanced visible-light-driven performance for sulfamethoxazole degradation. Chem Eng J. 2019;378(15):122122.

    Article  CAS  Google Scholar 

  27. Wei RB, Huang ZL, Gu GH, Wang Z, Zeng LX, Chen YB, Liu ZQ. Dual-cocatalysts decorated rimous CdS spheres advancing highly-efficient visible-light photocatalytic hydrogen production. Appl Catal B Environ. 2018;231(5):101.

    Article  CAS  Google Scholar 

  28. Zheng BF, Ouyang T, Wang Z, Long JY, Chen YB, Liu ZQ. Enhanced plasmon-driven photoelectrocatalytic methanol oxidation on Au decorated α-Fe2O3 nanotube arrays. Chem Commun. 2018;54:9583.

    Article  CAS  Google Scholar 

  29. Wang R, Shen J, Zhang W, Liu Q, Zhang M, Tang H. Build-in electric field induced step-scheme TiO2/W18O49 heterojunction for enhanced photocatalytic activity under visible-light irradiation. Ceram Int. 2020;46(1):23.

    Article  CAS  Google Scholar 

  30. Tang H, Xia ZH, Chen R, Liu QQ, Zhou TH. Oxygen doped g-C3N4 with nitrogen vacancy for enhanced photocatalytic hydrogen evolution. Chem Asian J. 2020;15(21):3456.

    Article  CAS  Google Scholar 

  31. Zhao CX, Yang XF, Han CH, Xu JS. Sacrificial agent-free photocatalytic oxygen evolution from water splitting over Ag3PO4/MXene hybrids. Solar RRL. 2020;4(8):2070082.

    Article  CAS  Google Scholar 

  32. Zhao CX, Ding C, Han CH, Yang XF, Xu JS. Lignin-incorporated supramolecular copolymerization yielding g-C3N4 nanoarchitectures for efficient photocatalytic hydrogen evolution. Solar RRL. 2021;5(2):2000486.

    Article  CAS  Google Scholar 

  33. Zhang JJ, Bai TY, Huang H, Yu MH, Fan X, Chang Z, Bu XH. Metal–organic-framework-based photocatalysts optimized by spatially separated cocatalysts for overall water splitting. Adv Mater. 2020;32(49):2004747.

    Article  CAS  Google Scholar 

  34. Lan M, Guo RM, Dou YB, Zhou J, Zhou A, Li JR. Fabrication of porous Pt-doping heterojunctions by using bimetallic MOF template for photocatalytic hydrogen generation. Nano Energy. 2017;33:238.

    Article  CAS  Google Scholar 

  35. Zhang GG, Lan ZA, Wang XC. Surface engineering of graphitic carbon nitride polymers with cocatalysts for photocatalytic overall water splitting. Chem Sci. 2017;8(8):5261.

    Article  CAS  Google Scholar 

  36. Zhang GG, Lan ZA, Lin LH, Lin S, Wang XC. Overall water splitting by Pt/g-C3N4 photocatalysts without using sacrificial agents. Chem Sci. 2016;7(5):3062.

    Article  CAS  Google Scholar 

  37. Ai ZZ, Shao YL, Chang B, Zhang L, Shen JX, Wu YZ, Huang BB, Hao XP. Rational modulation of p-n homojunction in P-doped g-C3N4 decorated with Ti3C2 for photocatalytic overall water splitting. Appl Catal B Environ. 2019;259(15):118077.

    Article  CAS  Google Scholar 

  38. Liu Y, Zhao YJ, Sun Y, Cao JJ, Wang H, Wang X, Huang H, Shao MW, Liu Y, Kang ZH. A 4e–2e cascaded pathway for highly efficient production of H2 and H2O2 from water photo-splitting at normal pressure. Appl Catal B Environ. 2020;270(5):118875.

  39. Fu YJ, Liu CA, Zhang ML, Zhu C, Li H, Wang HB, Song YX, Huang H, Liu Y, Kang ZH. Photocatalytic H2O2 and H2 generation from living chlorella vulgaris and carbon micro particle comodified g-C3N4. Adv Energy Mater. 2018;8(24):1802525.

    Article  CAS  Google Scholar 

  40. Wang M, Cheng JJ, Wang XF, Hong XK, Fan JJ, Yu HG. Sulphur-mediated photodeposition synthesis of NiS cocatalyst for boosting H2-evolution performance of g-C3N4 photocatalyst. Chin J Catal. 2021;42(1):37.

    Article  Google Scholar 

  41. Zhao CX, Tian L, Zou ZY, Chen ZP, Tang H, Liu QQ, Lin ZX, Yang XF. Revealing and accelerating interfacial charge carrier dynamics in Z-scheme heterojunctions for highly efficient photocatalytic oxygen evolution. Appl Catal B Environ. 2020;268(5):118445.

    Article  CAS  Google Scholar 

  42. Zhao CX, Chen ZP, Shi YXF, Zhang TR. Recent advances in conjugated polymers for visible-light-driven water splitting. Adv Mater. 2020;32(28):1907296.

    Article  CAS  Google Scholar 

  43. Qi MY, Li YH, Anpo M, Tang ZR, Xu YJ. Efficient photoredox-mediated C-C coupling organic synthesis and hydrogen production over engineered semiconductor quantum dots. ACS Catal. 2020;10(23):14327.

    Article  CAS  Google Scholar 

  44. Liu X, Zhao YX, Yang XF, Liu QQ, Yu XH, Li YY, Tang H, Zhang TR. Porous Ni5P4 as a promising cocatalyst for boosting the photocatalytic hydrogen evolution reaction performance. Appl Catal B Environ. 2020;275(15):119144.

    Article  CAS  Google Scholar 

  45. Prasad C, Tang H, Liu QQ, Bahadur I, Karlapudi S, Jiang YJ. A latest overview on photocatalytic application of g-C3N4 based nanostructured materials for hydrogen production. Int J Hydrog Energy. 2020;45(1):337.

    Article  CAS  Google Scholar 

  46. Liu QQ, Huang JX, Wang LL, Yu XH, Sun JF, Tang H. Unraveling the roles of hot electrons and cocatalyst toward broad spectrum photocatalytic H2 generation of g-C3N4 nanotube. Solar RRL. 2021;5(6):2000504.

    Article  CAS  Google Scholar 

  47. Mu RH, Ao YH, Wu TF, Wang C, Wang PF. Synergistic effect of molybdenum nitride nanoparticles and nitrogen-doped carbon on enhanced photocatalytic hydrogen evolution performance of CdS nanorods. J Alloys Compd. 2020;812(5):151990.

    Article  CAS  Google Scholar 

  48. Ding MY, Xiao R, Zhao CX, Bukhvalov D, Chen ZP, Xu HT, Tang H, Xu JS, Yang XF. Evidencing interfacial charge transfer in 2D CdS/2D MXene Schottky heterojunctions toward high-efficiency photocatalytic hydrogen production. Solar RRL. 2021;5(2):2000414.

  49. Peng JJ, Shen J, Yu XH, Tang H, Liu QQ. Construction of LSPR-enhanced 0D/2D CdS/MoO3−x S-scheme heterojunctions for visible-light-driven photocatalytic H2 evolution. Chin J Catal. 2021;42(1):87.

    Article  CAS  Google Scholar 

  50. Wang LL, Tang GG, Liu S, Dong HL, Liu QQ, Sun JF, Tang H. Interfacial active-site-rich 0D Co3O4/1D TiO2 p-n heterojunction for enhanced photocatalytic hydrogen evolution. Chem Eng J. 2021;428(15):131338.

    Google Scholar 

  51. Pan ZM, Liu MH, Zhang GG, Zhuzhang HY, Wang XC. Molecular triazine–heptazine junctions promoting exciton dissociation for overall water splitting with visible light. J Phys Chem C. 2021;125(18):9818.

    Article  CAS  Google Scholar 

  52. Zhang GG, Wang XC. Oxysulfide semiconductors for photocatalytic overall water splitting with visible light. Angew Chem Int Ed. 2019;58(44):15580.

    Article  CAS  Google Scholar 

  53. Chen R, Wang PF, Chen J, Wang C, Ao YH. Synergetic effect of MoS2 and MXene on the enhanced H2 evolution performance of CdS under visible light irradiation. Appl Surf Sci. 2019;473(15):11.

  54. Liu W, Shen J, Liu QQ, Yang XF, Tang H. Porous MoP network structure as co-catalyst for H2 evolution over g-C3N4 nanosheets. Appl Surf Sci. 2018;462(31):822.

    CAS  Google Scholar 

  55. Liu QQ, Huang JX, Tang H, Yu XH, Shen J. Construction 0D TiO2 nanoparticles/2D CoP nanosheets heterojunctions for enhanced photocatalytic H2 evolution activity. J Mater Sci Technol. 2020;56(1):196.

    Article  Google Scholar 

  56. Guo Y, Ao YH, Wang PF, Wang C. Mediator-free direct dual-Z-scheme Bi2S3/BiVO4/MgIn2S4 composite photocatalysts with enhanced visible-light-driven performance towards carbamazepine degradation. Appl Catal B Environ. 2019;254(5):479.

    Article  CAS  Google Scholar 

  57. Cui JY, Qi Y, Dong BB, Mu LC, Ding Q, Liu G, Jia MJ, Zhang FX, Li C. One-pot synthesis of BaMg1/3Ta2/3O3−xNy/Ta3N5 heterostructures as H2-evolving photocatalysts for construction of visible-light-driven Z-scheme overall water splitting. Appl Catal B Environ. 2019;241:1.

    Article  CAS  Google Scholar 

  58. Ma YY, Jiang X, Sun RK, Yang JL, Jiang XL, Liu ZQ, Xie MZ, Xie EQ, Han WH. Z-scheme Bi2O2.33/Bi2S3 heterojunction nanostructures for photocatalytic overall water splitting. Chem Eng J. 2019;382(19):123020.

    Google Scholar 

  59. Chen W, Liu H, Li XY, Liu S, Gao L, Mao LQ, Fan ZY, Shangguan WF, Fang WJ, Liu YS. Polymerizable complex synthesis of SrTiO3:(Cr/Ta) photocatalysts to improve photocatalytic water splitting activity under visible light. Appl Catal B Environ. 2016;192(5):145.

    Article  CAS  Google Scholar 

  60. Yuan YJ, Chen DQ, Yang SH, Yang LX, Wang JJ, Cao DP, Tu WG, Yu ZT, Zou ZG. Constructing noble-metal-free Z-scheme photocatalytic overall water splitting systems using MoS2 nanosheet modified CdS as a H2 evolution photocatalyst. J Mater Chem A. 2017;5(40):21205.

    Article  CAS  Google Scholar 

  61. Chen KH, Wang XW, Li QY, Feng YN, Chen FF, Yu Y. Spatial distribution of ZnIn2S4 nanosheets on g-C3N4 microtubes promotes photocatalytic CO2 reduction. Chem Eng J. 2021;418(5):129476.

    Article  CAS  Google Scholar 

  62. Wang S, Zhang W, Jia FC, Fu HL, Liu TT, Zhang X, Liu B, Núñez-Delgado A, Han N. Novel Ag3PO4/boron-carbon-nitrogen photocatalyst for highly efficient degradation of organic pollutants under visible-light irradiation. J Environ Manag. 2021;292(15):112763.

    Article  CAS  Google Scholar 

  63. Meng SG, Chen C, Gu XM, Wu HH, Meng QQ, Zhang JF, Chen SF, Fu XL, Liu D, Lei WW. Efficient hydrogen evolution and fine chemicals production on vacancies and cocatalyst modified 2D–3D ZnIn2S4 photocatalyst. Appl Catal B Environ. 2021;285(15):119789.

  64. Zhu C, Zhu MM, Sun Y, Zhou YJ, Huang H, Lifshitz Y, Lee ST, Zhong J, Liu Y, Kang ZH. Defects induced efficient overall water splitting on a carbon-based metal-free photocatalyst. Appl Catal B Environ. 2018;237(5):166.

    Article  CAS  Google Scholar 

  65. Bai Y, Nakagawa K, Cowan AJ, Aitchison CM, Yamaguchi Y, Zwijnenburg MA, Kudo A, Reiner Sprick S, Cooper AI. Photocatalyst Z-scheme system composed of a linear conjugated polymer and BiVO4 for overall water splitting under visible light. J Mater Chem A. 2020;8(32):16283.

    Article  CAS  Google Scholar 

  66. Liu CA, Fu YJ, Zhao J, Wang HB, Huang H, Liu Y, Dou YJ, Shao MW, Kang ZH. All-solid-state Z-scheme system of NiO/CDs/BiVO4 for visible light-driven efficient overall water splitting. Chem Eng J. 2019;358(15):134.

    Article  CAS  Google Scholar 

  67. Wang JM, Kuo MT, Zeng P, Xu L, Chen ST, Peng TY. Few-layer BiVO4 nanosheets decorated with SrTiO3: Rh nanoparticles for highly efficient visible-light-driven overall water splitting. Appl Catal B Environ. 2020;279(15):119377.

    Article  CAS  Google Scholar 

  68. Li YJ, Liu YY, Xing DN, Wang JJ, Zheng LR, Wang ZY, Wang P, Zheng ZK, Cheng HF, Dai Y, Huang BB. 2D/2D heterostructure of ultrathin BiVO4/Ti3C2 nanosheets for photocatalytic overall water splitting. Appl Catal B Environ. 2021;285(15):119855.

  69. Lin Y, Su WY, Wang XX, Fu XZ, Wang XC. LaOCl-coupled polymeric carbon nitride for overall water splitting through a one-photon excitation pathway. Angew Chem Int Ed. 2020;59(47):20919.

    Article  CAS  Google Scholar 

  70. Wang YL, Nie T, Li YH, Wang XL, Zheng LR, Chen AP, Gong XQ, Yang HG. Black tungsten nitride as a metallic photocatalyst for overall water splitting operable at up to 765 nm. Angew Chem Int Ed. 2017;56(26):7430.

    Article  CAS  Google Scholar 

  71. Qu D, Liu J, Miao X, Han MM, Zhang HC, Cui Z, Sun SR, Kang ZH, Fan HY, Sun ZC. Peering into water splitting mechanism of g-C3N4-carbon dots metal-free photocatalyst. Appl Catal B Environ. 2018;227(5):418.

    Article  CAS  Google Scholar 

  72. Wang L, Liu J, Wang HY, Cheng H, Wu XJ, Zhang Q, Xu HX. Forming electron traps deactivates self-assembled crystalline organic nanosheets toward photocatalytic overall water splitting. Sci Bull. 2021;66(3):265.

    Article  CAS  Google Scholar 

  73. Fu YJ, Zhu C, Liu CG, Zhang ML, Wang HB, Shi WL, Huang H, Liu Y, Kang ZH. CoMn-S/CDs nanocomposite for effective long wavelength visible-light-driven photocatalytic water splitting. Appl Catal B Environ. 2017;226(15):295.

    Google Scholar 

  74. Liu W, Cao LL, Cheng WR, Cao YJ, Liu XK, Zhang W, Mou XL, Jin LL, Zheng XS, Che W, Liu QH, Yao T, Wei SQ. Single-site active cobalt-based photocatalyst with a long carrier lifetime for spontaneous overall water splitting. Angew Chem Int Ed. 2017;56(32):9312.

    Article  CAS  Google Scholar 

  75. Feng JN, Bian J, Bai LL, Xi SB, Wang Y, Chen CL, Jing LQ. Efficient wide-spectrum photocatalytic overall water splitting over ultrathin molecular nickel phthalocyanine/BiVO4 Z-scheme heterojunctions without noble metals. Appl Catal B Environ. 2021;295(15):295.

    Google Scholar 

  76. Chen XJ, Wang J, Chai YQ, Zhang ZJ, Zhu YF. Efficient photocatalytic overall water splitting induced by the giant internal electric field of a g-C3N4/rGO/PDIP Z-scheme heterojunction. Adv Mater. 2021;33(7):2007479.

    Article  CAS  Google Scholar 

  77. Hu HH, Wang ZY, Cao LY, Zeng LZ, Zhang CK, Lin WB, Wang C. Metal–organic frameworks embedded in a liposome facilitate overall photocatalytic water splitting. Nat Chem. 2021;13:358.

    Article  CAS  Google Scholar 

  78. Ren YJ, Zeng DQ, Ong WJ. Interfacial engineering of graphitic carbon nitride (g-C3N4)-based metal sulfide heterojunction photocatalysts for energy conversion: a review. Chin J Catal. 2019;40(3):289.

    Article  CAS  Google Scholar 

  79. Sun S, Hisatomi T, Qian W, Chen SS, Ma GJ, Liu JY, Nandy S, Minegishi T, Katayama M, Domen K. Efficient redox-mediator-free Z-scheme water splitting employing oxysulfide photocatalysts under visible light. ACS Catal. 2018;8(3):1690.

    Article  CAS  Google Scholar 

  80. Ng BJ, Putri LK, Kong XY, Pasbakhsh P, Chai SP. Z-scheme photocatalyst sheets with P-doped twinned Zn0.5Cd0.5S1−x and Bi4NbO8Cl connected by carbon electron mediator for overall water splitting under ambient condition. Chem Eng J. 2021;404(15):127030.

  81. Ye XJ, Chen YH, Wu YH, Zhang XM, Wang XC, Chen SF. Constructing a system for effective utilization of photogenerated electrons and holes: photocatalytic selective transformation of aromatic alcohols to aromatic aldehydes and hydrogen evolution over Zn3In2S6 photocatalysts. Appl Catal B Environ. 2019;242:302.

    Article  CAS  Google Scholar 

  82. Lima MJ, Tavares PB, Silva AMT, Silva CG, Faria JL. Selective photocatalytic oxidation of benzyl alcohol to benzaldehyde by using metal-loaded g-C3N4 photocatalysts. Catal Today. 2017;287(1):70.

    Article  CAS  Google Scholar 

  83. Li PX, Zhao H, Yan XY, Yang X, Li JJ, Gao SY, Cao R. Visible-light-driven photocatalytic hydrogen production coupled with selective oxidation of benzyl alcohol over CdS@MoS2 heterostructures. Sci China Mater. 2020;63(11):2239.

    Article  CAS  Google Scholar 

  84. Lin Q, Li YH, Qi MY, Li JY, Tang ZR, Anpo M, Yamada YMA, Xu YJ. Photoredox dual reaction for selective alcohol oxidation and hydrogen evolution over nickel surface-modified ZnIn2S4. Appl Catal B Environ. 2020;271(15):118946.

    Article  CAS  Google Scholar 

  85. Zhu TT, Ye XJ, Zhang QQ, Hui ZZ, Wang XC, Chen SF. Efficient utilization of photogenerated electrons and holes for photocatalytic redox reactions using visible light-driven Au/ZnIn2S4 hybrid. J Hazard Mater. 2019;367(5):277.

    Article  CAS  Google Scholar 

  86. Zhang F, Li JM, Wang HF, Li YP, Liu Y, Qian QZ, Jin X, Wang XQ, Zhang JH, Zhang GQ. Realizing synergistic effect of electronic modulation and nanostructure engineering over graphitic carbon nitride for highly efficient visible-light H2 production coupled with benzyl alcohol oxidation. Appl Catal B Environ. 2020;269(15):118772.

    Article  CAS  Google Scholar 

  87. Meng LS, Chen ZY, Ma ZY, He S, Hou YD, Li HH, Yuan RS, Huang XH, Wang XX, Wang XC, Long JL. Gold plasmon-induced photocatalytic dehydrogenative coupling of methane to ethane on polar oxide surfaces. Energy Environ Sci. 2018;11(2):294.

    Article  CAS  Google Scholar 

  88. Li JY, Li YH, Zhang F, Tang ZR, Xu YJ. Visible-light-driven integrated organic synthesis and hydrogen evolution over 1D/2D CdS-Ti3C2Tx MXene composites. Appl Catal B Environ. 2020;269(15):118772.

    Google Scholar 

  89. Luo NC, Montini TZ, Zhang J, Fornasiero P, Fonda E, Hou TT, Nie W, Lu JM, Liu JX, Heggen M, Lin L, Ma CT, Wang M, Fan FT, Jin SY, Wang F. Visible-light-driven coproduction of diesel precursors and hydrogen from lignocellulose-derived methylfurans. Nat Energy. 2019;4(7):575.

    Article  CAS  Google Scholar 

  90. Kato Y, Yoshida H, Hattori T. Photoinduced non-oxidative coupling of methane over silica-alumina and alumina around room temperature. Chem Commun. 2002;51(3):223.

    CAS  Google Scholar 

  91. Li L, Li GD, Yan C, Mu XY, Pan XL, Zou XX, Wang KX, Chen JS. Efficient sunlight-driven dehydrogenative coupling of methane to ethane over a Zn+-modified zeolite. Angew Chem. 2011;50(36):8449.

    Article  Google Scholar 

  92. Yuliati L, Yoshida H. Photocatalytic conversion of methane. Chem Soc Rev. 2008;37(8):1592.

    Article  CAS  Google Scholar 

  93. Wu SQ, Tan XJ, Lei JY, Chen HJ, Wang LZ, Zhang JL. Ga-doped and Pt-loaded porous TiO2–SiO2 for photocatalytic nonoxidative coupling of methane. J Am Chem Soc. 2019;141(16):6592.

    Article  CAS  Google Scholar 

  94. Yu LH, Shao Y, Li DZ. Direct combination of hydrogen evolution from water and methane conversion in a photocatalytic system over Pt/TiO2. Appl Catal B Environ. 2017;204(5):216.

    Article  CAS  Google Scholar 

  95. Wang LC, Cao S, Guo K, Wu ZJ, Ma Z, Piao LY. Simultaneous hydrogen and peroxide production by photocatalytic water splitting. Chin J Catal. 2019;40(3):470.

    Article  CAS  Google Scholar 

  96. Zhang EH, Zhu QH, Huang JH, Liu J, Tan GQ, Sun CJ, Li T, Liu S, Li YM, Wang HZ, Wan XD, Wen ZH, Fan FT, Zhang JT, Ariga K. Visually resolving the direct Z-scheme heterojunction in CdS@ZnIn2S4 hollow cubes for photocatalytic evolution of H2 and H2O2 from pure water. Appl Catal B Environ. 2021;293(15):120213.

    Article  CAS  Google Scholar 

  97. Pan ZM, Zhang GG, Wang XC. Polymeric carbon nitride/reduced graphene oxide/Fe2O3: all-solid-state Z-scheme system for photocatalytic overall water splitting. Angew Chem Int Ed. 2019;58(21):7102.

    Article  CAS  Google Scholar 

  98. Dou YB, Zhang ST, Pan T, Xu SM, Zhou A, Pu M, Yan H, Han JB, Wei M, Evans DG, Duan X. TiO2@layered double hydroxide core-shell nanospheres with largely enhanced photocatalytic activity toward O2 generation. Adv Funct Mater. 2015;25(15):2243.

    Article  CAS  Google Scholar 

  99. Lin LH, Lin ZY, Zhang J, Cai X, Lin W, Yu ZY, Wang XC. Molecular-level insights on the reactive facet of carbon nitride single crystals photocatalysing overall water splitting. Nat Catal. 2020;3(8):649.

    Article  CAS  Google Scholar 

  100. Yang RJ, Chen QQ, Ma YY, Zhu RS, Fan YY, Huang JY, Niu HN, Dong Y, Li D, Zhang YF, Mei L, Chen BY, Zeng ZY. Highly efficient photocatalytic hydrogen evolution and simultaneous formaldehyde degradation over Z-scheme ZnIn2S4-NiO/BiVO4 hierarchical heterojunction under visible light irradiation. Chem Eng J. 2021;423(1):130164.

    Article  CAS  Google Scholar 

  101. Wang D, Liu JZ, Zhang M, Song YT, Zhang ZH, Wang J. Construction of ternary annular 2Z-scheme heterojunction CuO/WO3/CdS/ photocatalytic system for methylene blue degradation with simultaneous hydrogen production. Appl Surf Sci. 2019;498(31):143843.

    Article  CAS  Google Scholar 

  102. Lv HJ, Guo WW, Wu KF, Chen ZY, Bacsa J, Musaev DG, Geletii YV, Lauinger SM, Lian T, Hill CL. A noble-metal-free, tetra-nickel polyoxotungstate catalyst for efficient photocatalytic hydrogen evolution. J Am Chem Soc. 2014;136(40):14015.

    Article  CAS  Google Scholar 

  103. Lv HJ, Ruberu TPA, Fleischauer VE, Brennessel WW, Neidig ML, Eisenberg R. Catalytic light-driven generation of hydrogen from water by iron dithiolene complexes. J Am Chem Soc. 2016;138(36):11654.

    Article  CAS  Google Scholar 

  104. Liu C, Dong SS, Chen YG. Enhancement of visible-light-driven photocatalytic activity of carbon plane/g-C3N4/TiO2 nanocomposite by improving heterojunction contact. Chem Eng J. 2019;371:706.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 21975110 and 21972058) and Taishan Youth Scholar Program of Shandong Province.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qin-Qin Liu, Jie Hu or Hua Tang.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, LJ., Su, HW., Liu, QQ. et al. A review on photocatalytic systems capable of synchronously utilizing photogenerated electrons and holes. Rare Met. 41, 2387–2404 (2022). https://doi.org/10.1007/s12598-022-01966-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-022-01966-7

Keywords

Navigation