Skip to main content

Advertisement

Log in

Metal-containing covalent organic framework: a new type of photo/electrocatalyst

  • Mini Review
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Metal-containing covalent organic frameworks (MCOFs), as a class of crystalline organic polymers with abundant single-atom metal sites, can respond effectively to various vital reactions, including hydrogen evolution reaction (HER), CO2 reduction reaction (CO2RR), oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). The advent of MCOFs provides a platform for the establishment of model catalysts with highly repetitive structure to facilitate theoretical calculations and high-throughput screening while designing flexibility in monomer construction to lay the foundation for the development of highly selective and active photo/electrocatalysts. In this review, we summarize the recent progress in this field and highlight several important MCOFs photo/electrocatalysts for OER, ORR, HER, and CO2RR. Moreover, various approaches are also mentioned to improve or optimize the catalysts and indicate the future research direction on enhancing the performance of MCOFs catalysts based on the current existing challenges.

Graphical abstract

摘要

含金属共价有机框架 (MCOFs) 作为一类具有丰富的单原子金属位点的结晶性有机聚合物, 可以应用到各种重要反应, 例如氢气进化反应 (HER)、二氧化碳还原反应 (CO2RR)、氧还原反应 (ORR) 和氧进化反应 (OER)。MCOFs的出现为建立具有高度重复结构的模型催化剂提供了平台, 便于理论计算和高通量筛选, 同时单体结构的设计灵活性为开发高选择性和高活性的光/电催化剂奠定了基础。在这篇综述中, 我们总结了该领域的最新进展, 并强调了几个重要的用于OER、ORR、HER和CO2RR的MCOFs光/电催化剂。此外, 还总结了改进或优化催化剂的各种方法, 并根据目前存在的挑战, 指出了提高MCOFs催化剂性能的未来研究方向

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3

Reproduced with permission from Ref. [92]. Copyright 2020, American Chemical Society. e Proposed catalytic mechanism of Re-COF for CO2 Reduction; f FTIR of COF, Re-COF and their starting materials; g amount of CO produced as a function of time, where top left inset shows zoomed in profile in the first 2-h reaction, and lower right inset shows recyclability of system after three 3-h experiments. Reproduced with permission from Ref. [93]. Copyright 2018, American Chemical Society

Fig. 4

Reproduced with permission from Ref. [109]. Copyright 2019, American Chemical Society. e Proposed structure of CoPc-PDQ-COF and f chemical stability; g faradaic efficiencies of CoPc-PDQ-COF (red curve), monomeric [NH2]8CoPc (blue curve), commercial CoPc (green curve), and carbon fiber (black curve). Reproduced with permission from Ref. [110]. Copyright 2020, WILEY–VCH

Fig. 5

Reproduced with permission from Ref. [126]. Copyright 2020, American Chemical Society. e Schematic representation of synthesis of macro-TpBpy-Co; f OER performance of macro-COF-Co and g corresponding Tafel plots. Reproduced with permission from Ref. [127]. Copyright 2019, American Chemical Society

Similar content being viewed by others

References

  1. Chandrasekaran S, Yao L, Deng L, Bowen C, Zhang Y, Chen S, Lin Z, Peng F, Zhang P. Recent advances in metal sulfides: from controlled fabrication to electrocatalytic, photocatalytic and photoelectrochemical water splitting and beyond. Chem Soc Rev. 2019;48(15):4178.

    CAS  Google Scholar 

  2. Zhu JY, Liang F, Yao YC, Ma WH, Yang B. Preparation and application of metal organic frameworks derivatives in electro-catalysis. Chin J Rare Met. 2019;43(2):186.

    Google Scholar 

  3. Gao H, Yue HH, Qi F, Yu B, Zhang WL, Chen YF. Few-layered ReS2 nanosheets grown on graphene as electrocatalyst for hydrogen evolution reaction. Rare Met. 2018;37(12):1014.

    CAS  Google Scholar 

  4. Duan X, Xu J, Wei Z, Ma J, Guo S, Wang S, Liu H, Dou S. Metal-free carbon materials for CO2 electrochemical reduction. Adv Mater. 2017;29(41):1701784.

    Google Scholar 

  5. Gonglach S, Paul S, Haas M, Pillwein F, Sreejith SS, Barman S, De R, Mullegger S, Gerschel P, Apfel UP, Coskun H, Aljabour A, Stadler P, Schofberger W, Roy S. Molecular cobalt corrole complex for the heterogeneous electrocatalytic reduction of carbon dioxide. Nat Commun. 2019;10:3864.

    Google Scholar 

  6. Ju W, Bagger A, Hao GP, Varela AS, Sinev I, Bon V, Roldan Cuenya B, Kaskel S, Rossmeisl J, Strasser P. Understanding activity and selectivity of metal-nitrogen-doped carbon catalysts for electrochemical reduction of CO2. Nat Commun. 2017;8:944.

    Google Scholar 

  7. Ahn SH, Yu X, Manthiram A. “Wiring” Fe-Nx -embedded porous carbon framework onto 1d nanotubes for efficient oxygen reduction reaction in alkaline and acidic media. Adv Mater. 2017;29(26):1606534.

    Google Scholar 

  8. Cheng WZ, Liang JL, Yin HB, Wang YJ, Yan WF, Zhang JN. Bifunctional iron-phtalocyanine metal–organic framework catalyst for ORR, OER and rechargeable zinc–air battery. Rare Met. 2020;39(7):815.

    CAS  Google Scholar 

  9. Del Carmen GL, Kurtoglu A, Walsh DA, Khlobystov AN. Extremely stable platinum-amorphous carbon electrocatalyst within hollow graphitized carbon nanofibers for the oxygen reduction reaction. Adv Mater. 2016;28(41):9103.

    Google Scholar 

  10. Kim C, Dionigi F, Beermann V, Wang X, Moller T, Strasser P. Alloy nanocatalysts for the electrochemical oxygen reduction (ORR) and the direct electrochemical carbon dioxide reduction reaction (CO2RR). Adv Mater. 2019;31(31):1805617.

    Google Scholar 

  11. Qian Q, Asinger PA, Lee MJ, Han G, Mizrahi Rodriguez K, Lin S, Benedetti FM, Wu AX, Chi WS, Smith ZP. MOF-based membranes for gas separations. Chem Rev. 2020;120(16):8161.

    CAS  Google Scholar 

  12. Wang Q, Astruc D. State of the art and prospects in metal-organic framework (MOF)-based and MOF-derived nanocatalysis. Chem Rev. 2020;120(2):1438.

    CAS  Google Scholar 

  13. Bavykina A, Kolobov N, Khan IS, Bau JA, Ramirez A, Gascon J. Metal-organic frameworks in heterogeneous catalysis: recent progress, new trends, and future perspectives. Chem Rev. 2020;120(16):8468.

    CAS  Google Scholar 

  14. Ding SY, Wang W. Covalent organic frameworks (COFs): from design to applications. Chem Soc Rev. 2013;42(2):548.

    CAS  Google Scholar 

  15. Evans AM, Bradshaw NP, Litchfield B, Strauss MJ, Seckman B, Ryder MR, Castano I, Gilmore C, Gianneschi NC, Mulzer CR, Hersam MC, Dichtel WR. High-sensitivity acoustic molecular sensors based on large-area, spray-coated 2D covalent organic frameworks. Adv Mater. 2020;32(42):2004205.

    CAS  Google Scholar 

  16. Feng X, Chen L, Honsho Y, Saengsawang O, Liu L, Wang L, Saeki A, Irle S, Seki S, Dong Y, Jiang D. An ambipolar conducting covalent organic framework with self-sorted and periodic electron donor-acceptor ordering. Adv Mater. 2012;24(22):3026.

    CAS  Google Scholar 

  17. Feriante CH, Jhulki S, Evans AM, Dasari RR, Slicker K, Dichtel WR, Marder SR. Rapid synthesis of high surface area imine-linked 2D covalent organic frameworks by avoiding pore collapse during isolation. Adv Mater. 2020;32(2):1905776.

    CAS  Google Scholar 

  18. Guan X, Chen F, Fang Q, Qiu S. Design and applications of three dimensional covalent organic frameworks. Chem Soc Rev. 2020;49(5):1357.

    CAS  Google Scholar 

  19. Hou J, Zhang H, Simon GP, Wang H. Polycrystalline advanced microporous framework membranes for efficient separation of small molecules and ions. Adv Mater. 2020;32(18):1902009.

    CAS  Google Scholar 

  20. Qin Y, Wan Y, Guo J, Zhao M. Two-dimensional metal-organic framework nanosheet composites: preparations and applications. Chin Chem Lett. 2021. https://doi.org/10.1016/j.cclet.2021.07.013.

    Article  Google Scholar 

  21. Chen W, Pei J, He CT, Wan J, Ren H, Wang Y, Dong J, Wu K, Cheong WC, Mao J, Zheng X, Yan W, Zhuang Z, Chen C, Peng Q, Wang D, Li Y. Single tungsten atoms supported on MOF-derived N-doped carbon for robust electrochemical hydrogen evolution. Adv Mater. 2018;30(30):1800396.

    Google Scholar 

  22. Iwase K, Nakanishi S, Miyayama M, Kamiya K. Rational molecular design of electrocatalysts based on single-atom modified covalent organic frameworks for efficient oxygen reduction reaction. ACS Appl Energ Mater. 2020;3(2):1644.

    CAS  Google Scholar 

  23. Joshi T, Chen C, Li H, Diercks CS, Wang G, Waller PJ, Li H, Bredas JL, Yaghi OM, Crommie MF. Local electronic structure of molecular heterojunctions in a single-layer 2D covalent organic framework. Adv Mater. 2019;31(3):1805941.

    Google Scholar 

  24. Keller N, Bein T. Optoelectronic processes in covalent organic frameworks. Chem Soc Rev. 2021;50(3):1813.

    CAS  Google Scholar 

  25. Kong L, Zhong M, Shuang W, Xu Y, Bu XH. Electrochemically active sites inside crystalline porous materials for energy storage and conversion. Chem Soc Rev. 2020;49(8):2378.

    CAS  Google Scholar 

  26. Li J, Jing X, Li Q, Li S, Gao X, Feng X, Wang B. Bulk COFs and COF nanosheets for electrochemical energy storage and conversion. Chem Soc Rev. 2020;49(11):3565.

    CAS  Google Scholar 

  27. Lin CY, Zhang D, Zhao Z, Xia Z. Covalent organic framework electrocatalysts for clean energy conversion. Adv Mater. 2018;30(5):1703646.

    Google Scholar 

  28. Liu X, Huang D, Lai C, Zeng G, Qin L, Wang H, Yi H, Li B, Liu S, Zhang M, Deng R, Fu Y, Li L, Xue W, Chen S. Recent advances in covalent organic frameworks (COFs) as a smart sensing material. Chem Soc Rev. 2019;48(20):5266.

    CAS  Google Scholar 

  29. Grimaud A, Demortière A, Saubanère M, Dachraoui W, Duchamp M, Doublet ML, Tarascon JM. Activation of surface oxygen sites on an iridium-based model catalyst for the oxygen evolution reaction. Nat Energy. 2016;2(2):16189.

    Google Scholar 

  30. Grimaud A, Diaz-Morales O, Han B, Hong WT, Lee YL, Giordano L, Stoerzinger KA, Koper MTM, Shao-Horn Y. Activating lattice oxygen redox reactions in metal oxides to catalyse oxygen evolution. Nat Chem. 2017;9(5):457.

    CAS  Google Scholar 

  31. Jiang K, Luo M, Peng M, Yu Y, Lu YR, Chan TS, Liu P, de Groot FMF, Tan Y. Dynamic active-site generation of atomic iridium stabilized on nanoporous metal phosphides for water oxidation. Nat Commun. 2020;11(1):2701.

    CAS  Google Scholar 

  32. Rotondi S, Tartaglione L, Muci ML, Farcomeni A, Pasquali M, Mazzaferro S. Oxygen extraction ratio (OER) as a measurement of hemodialysis (HD) induced tissue hypoxia: a pilot study. Sci Rep. 2018;8:5655.

    Google Scholar 

  33. Liu C, Dong H, Ji Y, Hou T, Li Y. Origin of the catalytic activity of phosphorus doped MoS2 for oxygen reduction reaction (ORR) in alkaline solution: a theoretical study. Sci Rep. 2018;8:13292.

    Google Scholar 

  34. Lu Z, Xu W, Ma J, Li Y, Sun X, Jiang L. Superaerophilic carbon-nanotube-array electrode for high-performance oxygen reduction reaction. Adv Mater. 2016;28(33):7155.

    CAS  Google Scholar 

  35. Mun Y, Lee S, Kim K, Kim S, Lee S, Han JW, Lee J. Versatile strategy for tuning ORR activity of a single Fe-N4 site by controlling electron-withdrawing/donating properties of a carbon plane. J Am Chem Soc. 2019;141(15):6254.

    CAS  Google Scholar 

  36. Park SA, Lee EK, Song H, Kim YT. Bifunctional enhancement of oxygen reduction reaction activity on Ag catalysts due to water activation on LaMnO3 supports in alkaline media. Sci Rep. 2015;5:13552.

    CAS  Google Scholar 

  37. Puangsombut P, Tantavichet N. Effect of plating bath composition on chemical composition and oxygen reduction reaction activity of electrodeposited Pt–Co catalysts. Rare Met. 2019;38(2):95.

    CAS  Google Scholar 

  38. Bi S, Yang C, Zhang W, Xu J, Liu L, Wu D, Wang X, Han Y, Liang Q, Zhang F. Two-dimensional semiconducting covalent organic frameworks via condensation at arylmethyl carbon atoms. Nat Commun. 2019;10:2467.

    Google Scholar 

  39. Biswal BP, Valligatla S, Wang M, Banerjee T, Saad NA, Mariserla BMK, Chandrasekhar N, Becker D, Addicoat M, Senkovska I, Berger R, Rao DN, Kaskel S, Feng X. Nonlinear optical switching in regioregular porphyrin covalent organic frameworks. Angew Chem Int Ed. 2019;58(21):6896.

    CAS  Google Scholar 

  40. Chen R, Shi JL, Ma Y, Lin G, Lang X, Wang C. Designed synthesis of a 2D porphyrin-based sp2 carbon-conjugated covalent organic framework for heterogeneous photocatalysis. Angew Chem Int Ed. 2019;58(19):6430.

    CAS  Google Scholar 

  41. Derevyannikova EA, Kardash TY, Stadnichenko AI, Stonkus OA, Slavinskaya EM, Svetlichnyi VA, Boronin AI. Structural insight into strong Pt–CeO2 interaction: from single Pt atoms to PtOx clusters. J Phys Chem C. 2018;123(2):1320.

    Google Scholar 

  42. Hao W, Chen D, Li Y, Yang Z, Xing G, Li J, Chen L. Facile synthesis of porphyrin based covalent organic frameworks via an A2B2 monomer for highly efficient heterogeneous catalysis. Chem Mater. 2019;31(19):8100.

    CAS  Google Scholar 

  43. Jin E, Lan Z, Jiang Q, Geng K, Li G, Wang X, Jiang D. 2D sp2 carbon-conjugated covalent organic frameworks for photocatalytic hydrogen production from water. Chem. 2019;5(6):1632.

    CAS  Google Scholar 

  44. Kuznetsov DA, Chen Z, Kumar PV, Tsoukalou A, Kierzkowska A, Abdala PM, Safonova OV, Fedorov A, Muller CR. Single site cobalt substitution in 2D molybdenum carbide (mxene) enhances catalytic activity in the hydrogen evolution reaction. J Am Chem Soc. 2019;141(44):17809.

    CAS  Google Scholar 

  45. Peng X, Zhao S, Mi Y, Han L, Liu X, Qi D, Sun J, Liu Y, Bao H, Zhuo L, Xin HL, Luo J, Sun X. Trifunctional single-atomic Ru sites enable efficient overall water splitting and oxygen reduction in acidic media. Small. 2020;16(33):2002888.

    CAS  Google Scholar 

  46. Shi JL, Chen R, Hao H, Wang C, Lang X. 2D sp2 carbon-conjugated porphyrin covalent organic framework for cooperative photocatalysis with tempo. Angew Chem Int Ed. 2020;59(23):9088.

    CAS  Google Scholar 

  47. Sun M, Ji J, Hu M, Weng M, Zhang Y, Yu H, Tang J, Zheng J, Jiang Z, Pan F, Liang C, Lin Z. Overwhelming the performance of single atoms with atomic clusters for platinum-catalyzed hydrogen evolution. ACS Catal. 2019;9(9):8213.

    CAS  Google Scholar 

  48. Xiao X, Gao Y, Zhang L, Zhang J, Zhang Q, Li Q, Bao H, Zhou J, Miao S, Chen N, Wang J, Jiang B, Tian C, Fu H. A promoted charge separation/transfer system from Cu single atoms and C3N4 layers for efficient photocatalysis. Adv Mater. 2020;32(33):2003082.

    CAS  Google Scholar 

  49. Ye L, Ying Y, Sun D, Zhang Z, Fei L, Wen Z, Qiao J, Huang H. Highly efficient porous carbon electrocatalyst with controllable N-species content for selective CO2 reduction. Angew Chem Int Ed. 2020;59(8):3244.

    CAS  Google Scholar 

  50. Zhang H, Yu L, Chen T, Zhou W, Lou XWD. Surface modulation of hierarchical MoS2 nanosheets by Ni single atoms for enhanced electrocatalytic hydrogen evolution. Adv Funct Mater. 2018;28(51):1807086.

    Google Scholar 

  51. Chao Y, Zhou P, Li N, Lai J, Yang Y, Zhang Y, Tang Y, Yang W, Du Y, Su D, Tan Y, Guo S. Ultrathin visible-light-driven Mo incorporating In2O3 -ZnIn2Se4 z-scheme nanosheet photocatalysts. Adv Mater. 2019;31(5):1807226.

    Google Scholar 

  52. Chu S, Ou P, Ghamari P, Vanka S, Zhou B, Shih I, Song J, Mi Z. Photoelectrochemical CO2 reduction into syngas with the metal/oxide interface. J Am Chem Soc. 2018;140(25):7869.

    CAS  Google Scholar 

  53. Ji X, Kang Y, Fan T, Xiong Q, Zhang S, Tao W, Zhang H. An antimonene/Cp*Rh(phen)Cl/black phosphorus hybrid nanosheet-based z-scheme artificial photosynthesis for enhanced photo/bio-catalytic CO2 reduction. J Mater Chem A. 2020;8(1):323.

    CAS  Google Scholar 

  54. Jin J, Yu J, Guo D, Cui C, Ho W. A hierarchical z-scheme CdS-WO3 photocatalyst with enhanced CO2 reduction activity. Small. 2015;11(39):5262.

    CAS  Google Scholar 

  55. Jing L, Zhou J, Durrant JR, Tang J, Liu D, Fu H. Dynamics of photogenerated charges in the phosphate modified TiO2 and the enhanced activity for photoelectrochemical water splitting. Energ Environ Sci. 2012;5(4):6552.

    CAS  Google Scholar 

  56. Liang L, Lei F, Gao S, Sun Y, Jiao X, Wu J, Qamar S, Xie Y. Single unit cell bismuth tungstate layers realizing robust solar CO2 reduction to methanol. Angew Chem Int Ed. 2015;54(47):13971.

    CAS  Google Scholar 

  57. Liu Z, Wang L, Yu X, Zhang J, Yang R, Zhang X, Ji Y, Wu M, Deng L, Li L, Wang ZL. Piezoelectric-effect-enhanced full-spectrum photoelectrocatalysis in p–n heterojunction. Adv Funct Mater. 2019;29(41):1807279.

    CAS  Google Scholar 

  58. Peng Y, Zhao M, Chen B, Zhang Z, Huang Y, Dai F, Lai Z, Cui X, Tan C, Zhang H. Hybridization of mofs and COFs: a new strategy for construction of MOF@COF core-shell hybrid materials. Adv Mater. 2018;30(3):1705454.

    Google Scholar 

  59. Segura JL, Mancheno MJ, Zamora F. Covalent organic frameworks based on schiff-base chemistry: synthesis, properties and potential applications. Chem Soc Rev. 2016;45(20):5635.

    CAS  Google Scholar 

  60. Meng L, Wang S, Cao F, Tian W, Long R, Li L. Doping-induced amorphization, vacancy, and gradient energy band in SnS2 nanosheet arrays for improved photoelectrochemical water splitting. Angew Chem Int Ed. 2019;58(20):6761.

    CAS  Google Scholar 

  61. Pan Z, Zhang G, Wang X. Polymeric carbon nitride/reduced graphene oxide/Fe2O3: all-solid-state z-scheme system for photocatalytic overall water splitting. Angew Chem Int Ed. 2019;58(21):7102.

    CAS  Google Scholar 

  62. Ren H, Dittrich T, Ma H, Hart JN, Fengler S, Chen S, Li Y, Wang Y, Cao F, Schieda M, Ng YH, Xie Z, Bo X, Koshy P, Sheppard LR, Zhao C, Sorrell CC. Manipulation of charge transport by metallic V13O16 decorated on bismuth vanadate photoelectrochemical catalyst. Adv Mater. 2019;31(8):1807204.

    Google Scholar 

  63. Wang JC, Yao HC, Fan ZY, Zhang L, Wang JS, Zang SQ, Li ZJ. Indirect z-scheme bioi/g-C3N4 photocatalysts with enhanced photoreduction CO2 activity under visible light irradiation. ACS Appl Mater Interfaces. 2016;8(6):3765.

    CAS  Google Scholar 

  64. Segura JL, Royuela S, Mar RM. Post-synthetic modification of covalent organic frameworks. Chem Soc Rev. 2019;48(14):3903.

    CAS  Google Scholar 

  65. Zhang L, Han L, Liu H, Liu X, Luo J. Potential-cycling synthesis of single platinum atoms for efficient hydrogen evolution in neutral media. Angew Chem Int Ed. 2017;56(44):13694.

    CAS  Google Scholar 

  66. Zhao Y, Liu H, Wu C, Zhang Z, Pan Q, Hu F, Wang R, Li P, Huang X, Li Z. Fully conjugated two-dimensional sp2 -carbon covalent organic frameworks as artificial photosystem with high efficiency. Angew Chem Int Ed. 2019;58(16):5376.

    CAS  Google Scholar 

  67. Wang H, Zeng Z, Xu P, Li L, Zeng G, Xiao R, Tang Z, Huang D, Tang L, Lai C, Jiang D, Liu Y, Yi H, Qin L, Ye S, Ren X, Tang W. Recent progress in covalent organic framework thin films: fabrications, applications and perspectives. Chem Soc Rev. 2019;48(2):488.

    CAS  Google Scholar 

  68. Yusran Y, Fang Q, Valtchev V. Electroactive covalent organic frameworks: design, synthesis, and applications. Adv Mater. 2020;32(44):2002038.

    CAS  Google Scholar 

  69. Wang Z, Zhang S, Chen Y, Zhang Z, Ma S. Covalent organic frameworks for separation applications. Chem Soc Rev. 2020;49(3):708.

    CAS  Google Scholar 

  70. Sun Q, Aguila B, Ma S. A bifunctional covalent organic framework as an efficient platform for cascade catalysis. Materials Chemistry Frontiers. 2017;1(7):1310.

    CAS  Google Scholar 

  71. Sun Q, Aguila B, Perman J, Nguyen N, Ma S. Flexibility matters: cooperative active sites in covalent organic framework and threaded ionic polymer. J Am Chem Soc. 2016;138(48):15790.

    CAS  Google Scholar 

  72. Wang P, Xu Q, Li Z, Jiang W, Jiang Q, Jiang D. Exceptional iodine capture in 2D covalent organic frameworks. Adv Mater. 2018;30:1801991.

    Google Scholar 

  73. Aiyappa HB, Thote J, Shinde DB, Banerjee R, Kurungot S. Cobalt-modified covalent organic framework as a robust water oxidation electrocatalyst. Chem Mater. 2016;28(12):4375.

    CAS  Google Scholar 

  74. Calik M, Auras F, Salonen LM, Bader K, Grill I, Handloser M, Medina DD, Dogru M, Lobermann F, Trauner D, Hartschuh A, Bein T. Extraction of photogenerated electrons and holes from a covalent organic framework integrated heterojunction. J Am Chem Soc. 2014;136(51):17802.

    CAS  Google Scholar 

  75. Tavakoli E, Kakekhani A, Kaviani S, Tan P, Ghaleni MM, Zaeem MA, Rappe AM, Nejati S. In situ bottom-up synthesis of porphyrin-based covalent organic frameworks. J Am Chem Soc. 2019;141(50):19560.

    CAS  Google Scholar 

  76. Diercks CS, Lin S, Kornienko N, Kapustin EA, Nichols EM, Zhu C, Zhao Y, Chang CJ, Yaghi OM. Reticular electronic tuning of porphyrin active sites in covalent organic frameworks for electrocatalytic carbon dioxide reduction. J Am Chem Soc. 2018;140(3):1116.

    CAS  Google Scholar 

  77. Yusran Y, Li H, Guan X, Li D, Tang L, Xue M, Zhuang Z, Yan Y, Valtchev V, Qiu S, Fang Q. Exfoliated mesoporous 2D covalent organic frameworks for high-rate electrochemical double-layer capacitors. Adv Mater. 2020;32(8):1907289.

    CAS  Google Scholar 

  78. Geng K, He T, Liu R, Dalapati S, Tan KT, Li Z, Tao S, Gong Y, Jiang Q, Jiang D. Covalent organic frameworks: design, synthesis, and functions. Chem Rev. 2020;120(16):8814.

    CAS  Google Scholar 

  79. Zhong W, Sa R, Li L, He Y, Li L, Bi J, Zhuang Z, Yu Y, Zou Z. A covalent organic framework bearing single Ni sites as a synergistic photocatalyst for selective photoreduction of CO2 to co. J Am Chem Soc. 2019;141(18):7615.

    CAS  Google Scholar 

  80. Haug WK, Wolfson ER, Morman BT, Thomas CM, McGrier PL. A nickel-doped dehydrobenzoannulene-based two-dimensional covalent organic framework for the reductive cleavage of inert aryl C-S bonds. J Am Chem Soc. 2020;142(12):5521.

    CAS  Google Scholar 

  81. Yu X, De Waele V, Lofberg A, Ordomsky V, Khodakov AY. Selective photocatalytic conversion of methane into carbon monoxide over zinc-heteropolyacid-titania nanocomposites. Nat Commun. 2019;10:700.

    CAS  Google Scholar 

  82. Wang Y, Liu X, Han X, Godin R, Chen J, Zhou W, Jiang C, Thompson JF, Mustafa KB, Shevlin SA, Durrant JR, Guo Z, Tang J. Unique hole-accepting carbon-dots promoting selective carbon dioxide reduction nearly 100% to methanol by pure water. Nat Commun. 2020;11:2531.

    CAS  Google Scholar 

  83. Wagner A, Sahm CD, Reisner E. Towards molecular understanding of local chemical environment effects in electro- and photocatalytic CO2 reduction. Nat Catal. 2020;3(10):775.

    CAS  Google Scholar 

  84. Ran J, Jaroniec M, Qiao SZ. Cocatalysts in semiconductor-based photocatalytic CO2 reduction: achievements, challenges, and opportunities. Adv Mater. 2018;30(7):1704649.

    Google Scholar 

  85. Pati PB, Wang R, Boutin E, Diring S, Jobic S, Barreau N, Odobel F, Robert M. Photocathode functionalized with a molecular cobalt catalyst for selective carbon dioxide reduction in water. Nat Commun. 2020;11:3499.

    CAS  Google Scholar 

  86. Jiang Z, Wan W, Li H, Yuan S, Zhao H, Wong PK. A hierarchical z-scheme alpha-Fe2O3/g-C3N4 hybrid for enhanced photocatalytic CO2 reduction. Adv Mater. 2018;30(10):1706108.

    Google Scholar 

  87. Gao C, Meng Q, Zhao K, Yin H, Wang D, Guo J, Zhao S, Chang L, He M, Li Q, Zhao H, Huang X, Gao Y, Tang Z. Co3O4 hexagonal platelets with controllable facets enabling highly efficient visible-light photocatalytic reduction of CO2. Adv Mater. 2016;28(30):6485.

    CAS  Google Scholar 

  88. Dong C, Lian C, Hu S, Deng Z, Gong J, Li M, Liu H, Xing M, Zhang J. Size-dependent activity and selectivity of carbon dioxide photocatalytic reduction over platinum nanoparticles. Nat Commun. 2018;9:1252.

    Google Scholar 

  89. Chen F, Ma Z, Ye L, Ma T, Zhang T, Zhang Y, Huang H. Macroscopic spontaneous polarization and surface oxygen vacancies collaboratively boosting CO2 photoreduction on BiOIO3 single crystals. Adv Mater. 2020;32(11):1908350.

    CAS  Google Scholar 

  90. Bie C, Zhu B, Xu F, Zhang L, Yu J. In situ grown monolayer N-doped graphene on CdS hollow spheres with seamless contact for photocatalytic CO2 reduction. Adv Mater. 2019;31(42):1902868.

    CAS  Google Scholar 

  91. Bae KL, Kim J, Lim CK, Nam KM, Song H. Colloidal zinc oxide-copper(i) oxide nanocatalysts for selective aqueous photocatalytic carbon dioxide conversion into methane. Nat Commun. 2017;8:1156.

    Google Scholar 

  92. Gong YN, Zhong W, Li Y, Qiu Y, Zheng L, Jiang J, Jiang HL. Regulating photocatalysis by spin-state manipulation of cobalt in covalent organic frameworks. J Am Chem Soc. 2020;142(39):16723.

    CAS  Google Scholar 

  93. Yang S, Hu W, Zhang X, He P, Pattengale B, Liu C, Cendejas M, Hermans I, Zhang X, Zhang J, Huang J. 2D covalent organic frameworks as intrinsic photocatalysts for visible light-driven CO2 reduction. J Am Chem Soc. 2018;140(44):14614.

    CAS  Google Scholar 

  94. Liu W, Li X, Wang C, Pan H, Liu W, Wang K, Zeng Q, Wang R, Jiang J. A scalable general synthetic approach toward ultrathin imine-linked two-dimensional covalent organic framework nanosheets for photocatalytic CO2 reduction. J Am Chem Soc. 2019;141(43):17431.

    CAS  Google Scholar 

  95. Lv H, Sa R, Li P, Yuan D, Wang X, Wang R. Metalloporphyrin-based covalent organic frameworks composed of the electron donor-acceptor dyads for visible-light-driven selective CO2 reduction. Sci China Chem. 2020;63(9):1289.

    CAS  Google Scholar 

  96. Shen J, Kortlever R, Kas R, Birdja YY, Diaz-Morales O, Kwon Y, Ledezma-Yanez I, Schouten KJ, Mul G, Koper MT. Electrocatalytic reduction of carbon dioxide to carbon monoxide and methane at an immobilized cobalt protoporphyrin. Nat Commun. 2015;6:8177.

    Google Scholar 

  97. Kibria MG, Dinh CT, Seifitokaldani A, De Luna P, Burdyny T, Quintero-Bermudez R, Ross MB, Bushuyev OS, Garcia de Arquer FP, Yang P, Sinton D, Sargent EH. A surface reconstruction route to high productivity and selectivity in CO2 electroreduction toward C2+ hydrocarbons. Adv Mater. 2018;30(49):1804867.

    Google Scholar 

  98. Chen R, Wang Y, Ma Y, Mal A, Gao XY, Gao L, Qiao L, Li XB, Wu LZ, Wang C. Rational design of isostructural 2D porphyrin-based covalent organic frameworks for tunable photocatalytic hydrogen evolution. Nat Commun. 2021;12:1354.

    CAS  Google Scholar 

  99. Zhao Z, Zheng Y, Wang C, Zhang S, Song J, Li Y, Ma S, Cheng P, Zhang Z, Chen Y. Fabrication of robust covalent organic frameworks for enhanced visible-light-driven H2 evolution. ACS Catal. 2021;11(4):2098.

    CAS  Google Scholar 

  100. Zhang FM, Sheng JL, Yang ZD, Sun XJ, Tang HL, Lu M, Dong H, Shen FC, Liu J, Lan YQ. Rational design of MOF/COF hybrid materials for photocatalytic H2 evolution in the presence of sacrificial electron donors. Angew Chem Int Ed. 2018;57(37):12106.

    CAS  Google Scholar 

  101. Zu X, Li X, Liu W, Sun Y, Xu J, Yao T, Yan W, Gao S, Wang C, Wei S, Xie Y. Efficient and robust carbon dioxide electroreduction enabled by atomically dispersed snδ+ sites. Adv Mater. 2019;31(15):1808135.

    Google Scholar 

  102. Zhu HJ, Lu M, Wang YR, Yao SJ, Zhang M, Kan YH, Liu J, Chen Y, Li SL, Lan YQ. Efficient electron transmission in covalent organic framework nanosheets for highly active electrocatalytic carbon dioxide reduction. Nat Commun. 2020;11:497.

    CAS  Google Scholar 

  103. Zheng T, Jiang K, Wang H. Recent advances in electrochemical CO2-to-Co conversion on heterogeneous catalysts. Adv Mater. 2018;30(48):1802066.

    Google Scholar 

  104. Xu H, Rebollar D, He H, Chong L, Liu Y, Liu C, Sun CJ, Li T, Muntean JV, Winans RE, Liu DJ, Xu T. Highly selective electrocatalytic CO2 reduction to ethanol by metallic clusters dynamically formed from atomically dispersed copper. Nat Energy. 2020;5(8):623.

    CAS  Google Scholar 

  105. Wang X, de Araujo JF, Ju W, Bagger A, Schmies H, Kuhl S, Rossmeisl J, Strasser P. Mechanistic reaction pathways of enhanced ethylene yields during electroreduction of CO2-Co co-feeds on Cu and Cu-tandem electrocatalysts. Nat Nanotechnol. 2019;14(11):1063.

    CAS  Google Scholar 

  106. Song RB, Zhu W, Fu J, Chen Y, Liu L, Zhang JR, Lin Y, Zhu JJ. Electrode materials engineering in electrocatalytic CO2 reduction: energy input and conversion efficiency. Adv Mater. 2020;32(27):1903796.

    CAS  Google Scholar 

  107. Ma L, Hu W, Mei B, Liu H, Yuan B, Zang J, Chen T, Zou L, Zou Z, Yang B, Yu Y, Ma J, Jiang Z, Wen K, Yang H. Covalent triazine framework confined copper catalysts for selective electrochemical CO2 reduction: operando diagnosis of active sites. ACS Catal. 2020;10(8):4534.

    CAS  Google Scholar 

  108. Wu Q, Xie RK, Mao MJ, Chai GL, Yi JD, Zhao SS, Huang YB, Cao R. Integration of strong electron transporter tetrathiafulvalene into metalloporphyrin-based covalent organic framework for highly efficient electroreduction of CO2. ACS Energy Lett. 2020;5(3):1005.

    CAS  Google Scholar 

  109. Cheung PL, Lee SK, Kubiak CP. Facile solvent-free synthesis of thin iron porphyrin COFs on carbon cloth electrodes for CO2 reduction. Chem Mater. 2019;31(6):1908.

    CAS  Google Scholar 

  110. Huang N, Lee KH, Yue Y, Xu X, Irle S, Jiang Q, Jiang D. A stable and conductive metallophthalocyanine framework for electrocatalytic carbon dioxide reduction in water. Angew Chem Int Ed. 2020;59(38):16587.

    CAS  Google Scholar 

  111. Li J, Chen G, Zhu Y, Liang Z, Pei A, Wu CL, Wang H, Lee HR, Liu K, Chu S, Cui Y. Efficient electrocatalytic CO2 reduction on a three-phase interface. Nat Catal. 2018;1(8):592.

    CAS  Google Scholar 

  112. Liang HQ, Zhao S, Hu XM, Ceccato M, Skrydstrup T, Daasbjerg K. Hydrophobic copper interfaces boost electroreduction of carbon dioxide to ethylene in water. ACS Catal. 2021;11(2):958.

    CAS  Google Scholar 

  113. Zhu YG, Shang CQ, Wang ZY, Zhang JQ, Yang MY, Cheng H, Lu ZG. Co and N co-modified carbon nanotubes as efficient electrocatalyst for oxygen reduction reaction. Rare Met. 2019;40(1):90.

    Google Scholar 

  114. Zhang Q, Zhang Y, Meng Z, Tong W, Yu X, An Q. Constructing the magnetic bifunctional graphene/titania nanosheet-based composite photocatalysts for enhanced visible-light photodegradation of MB and electrochemical ORR from polluted water. Sci Rep. 2017;7:12296.

    Google Scholar 

  115. Xiao M, Chen Y, Zhu J, Zhang H, Zhao X, Gao L, Wang X, Zhao J, Ge J, Jiang Z, Chen S, Liu C, Xing W. Climbing the apex of the ORR volcano plot via binuclear site construction: electronic and geometric engineering. J Am Chem Soc. 2019;141(44):17763.

    CAS  Google Scholar 

  116. Zhou J, Zhang L, Huang YC, Dong CL, Lin HJ, Chen CT, Tjeng LH, Hu Z. Voltage- and time-dependent valence state transition in cobalt oxide catalysts during the oxygen evolution reaction. Nat Commun. 2020;11:1984.

    CAS  Google Scholar 

  117. Wang J, Gao Y, Kong H, Kim J, Choi S, Ciucci F, Hao Y, Yang S, Shao Z, Lim J. Non-precious-metal catalysts for alkaline water electrolysis: operando characterizations, theoretical calculations, and recent advances. Chem Soc Rev. 2020;49(24):9154.

    CAS  Google Scholar 

  118. Zhu Y, Lin Q, Zhong Y, Tahini HA, Shao Z, Wang H. Metal oxide-based materials as an emerging family of hydrogen evolution electrocatalysts. Energ Environ Sci. 2020;13(10):3361.

    CAS  Google Scholar 

  119. Zhang J, Wu J, Guo H, Chen W, Yuan J, Martinez U, Gupta G, Mohite A, Ajayan PM, Lou J. Unveiling active sites for the hydrogen evolution reaction on monolayer MoS2. Adv Mater. 2017;29(42):1701955.

    Google Scholar 

  120. Yin Y, Zhang Y, Gao T, Yao T, Zhang X, Han J, Wang X, Zhang Z, Xu P, Zhang P, Cao X, Song B, Jin S. Synergistic phase and disorder engineering in 1T-MoSe2 nanosheets for enhanced hydrogen-evolution reaction. Adv Mater. 2017;29(28):1700311.

    Google Scholar 

  121. Wang ZY, Jiang SD, Duan CQ, Wang D, Luo SH, Liu YG. In situ synthesis of Co3O4 nanoparticles confined in 3D nitrogen-doped porous carbon as an efficient bifunctional oxygen electrocatalyst. Rare Met. 2020;39(12):1383.

    CAS  Google Scholar 

  122. Li T, Hu T, Dai L, Li CM. Metal-free photo- and electro-catalysts for hydrogen evolution reaction. J Mater Chem A. 2020;8(45):23674.

    CAS  Google Scholar 

  123. Huang H, Yan M, Yang C, He H, Jiang Q, Yang L, Lu Z, Sun Z, Xu X, Bando Y, Yamauchi Y. Graphene nanoarchitectonics: recent advances in graphene-based electrocatalysts for hydrogen evolution reaction. Adv Mater. 2019;31(48):1903415.

    CAS  Google Scholar 

  124. Hua W, Sun HH, Xu F, Wang JG. A review and perspective on molybdenum-based electrocatalysts for hydrogen evolution reaction. Rare Met. 2020;39(4):335.

    CAS  Google Scholar 

  125. Suen NT, Hung SF, Quan Q, Zhang N, Xu YJ, Chen HM. Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chem Soc Rev. 2017;46(2):337.

    CAS  Google Scholar 

  126. Wang J, Wang J, Qi S, Zhao M. Stable multifunctional single-atom catalysts resulting from the synergistic effect of anchored transition-metal atoms and host covalent–organic frameworks. J Phys Chem C. 2020;124(32):17675.

    CAS  Google Scholar 

  127. Zhao X, Pachfule P, Li S, Langenhahn T, Ye M, Schlesiger C, Praetz S, Schmidt J, Thomas A. Macro/microporous covalent organic frameworks for efficient electrocatalysis. J Am Chem Soc. 2019;141(16):6623.

    CAS  Google Scholar 

  128. Guo J, Lin CY, Xia Z, Xiang Z. A pyrolysis-free covalent organic polymer for oxygen reduction. Angew Chem Int Ed. 2018;57(38):12567.

    CAS  Google Scholar 

  129. Park E, Jack J, Hu Y, Wan S, Huang S, Jin Y, Maness PC, Yazdi S, Ren Z, Zhang W. Covalent organic framework-supported platinum nanoparticles as efficient electrocatalysts for water reduction. Nanoscale. 2020;12(4):2596.

    CAS  Google Scholar 

  130. Ding Y, Cai P, Wen Z. Electrochemical neutralization energy: from concept to devices. Chem Soc Rev. 2021;50(3):1495.

    CAS  Google Scholar 

  131. Vaghasiya JV, Mayorga-Martinez CC, Pumera M. Flexible energy generation and storage devices: focus on key role of heterocyclic solid-state organic ionic conductors. Chem Soc Rev. 2020;49(21):7819.

    CAS  Google Scholar 

  132. Yi F, Ren H, Shan J, Sun X, Wei D, Liu Z. Wearable energy sources based on 2D materials. Chem Soc Rev. 2018;47(9):3152.

    CAS  Google Scholar 

  133. Tian XL, Zhao X, Su YQ, Wang LJ, Wang HM, Dang D, Chi B, Liu HF, Hensen EJM, Lou XW, Xia BY. Engineering bunched Pt-Ni alloy nanocages for efficient oxygen reduction in practical fuel cells. Science. 2019;366(6467):850.

    CAS  Google Scholar 

  134. Qiao MF, Wang Y, Li L, Hu GZ, Zou GA, Mamat X, Dong YM, Hu X. Self-templated nitrogen-doped mesoporous carbon decorated with double transition-metal active sites for enhanced oxygen electrode catalysis. Rare Met. 2019;39(7):824.

    Google Scholar 

  135. Singh SK, Takeyasu K, Nakamura J. Active sites and mechanism of oxygen reduction reaction electrocatalysis on nitrogen-doped carbon materials. Adv Mater. 2019;31(13):1804297.

    Google Scholar 

  136. Wang S, Zhang Z, Zhang H, Rajan AG, Xu N, Yang Y, Zeng Y, Liu P, Zhang X, Mao Q, He Y, Zhao J, Li BG, Strano MS, Wang WJ. Reversible polycondensation-termination growth of covalent-organic-framework spheres, fibers, and films. Matter. 2019;1(6):1592.

    Google Scholar 

  137. Tan J, Namuangruk S, Kong W, Kungwan N, Guo J, Wang C. Manipulation of amorphous-to-crystalline transformation: towards the construction of covalent organic framework hybrid microspheres with NIR photothermal conversion ability. Angew Chem Int Ed. 2016;55(45):13979.

    CAS  Google Scholar 

  138. Fan H, Gu J, Meng H, Knebel A, Caro J. High-flux membranes based on the covalent organic framework COF-LZU1 for selective dye separation by nanofiltration. Angew Chem Int Ed. 2018;57(15):4083.

    CAS  Google Scholar 

  139. Kandambeth S, Biswal BP, Chaudhari HD, Rout KC, Kunjattu HS, Mitra S, Karak S, Das A, Mukherjee R, Kharul UK, Banerjee R. Selective molecular sieving in self-standing porous covalent-organic-framework membranes. Adv Mater. 2017;29(2):1603945.

    Google Scholar 

  140. Khan NA, Zhang R, Wu H, Shen J, Yuan J, Fan C, Cao L, Olson MA, Jiang Z. Solid-vapor interface engineered covalent organic framework membranes for molecular separation. J Am Chem Soc. 2020;142(31):13450.

    CAS  Google Scholar 

  141. Wang J, Huang Z, Liu W, Chang C, Tang H, Li Z, Chen W, Jia C, Yao T, Wei S, Wu Y, Li Y. Design of N-coordinated dual-metal sites: a stable and active Pt-free catalyst for acidic oxygen reduction reaction. J Am Chem Soc. 2017;139(48):17281.

    CAS  Google Scholar 

  142. Yun R, Zhan F, Wang X, Zhang B, Sheng T, Xin Z, Mao J, Liu S, Zheng B. Design of binary Cu-Fe sites coordinated with nitrogen dispersed in the porous carbon for synergistic CO2 electroreduction. Small. 2021;17(4):e2006951.

    Google Scholar 

  143. Kim H, Shin D, Yang W, Won DH, Oh HS, Chung MW, Jeong D, Kim SH, Chae KH, Ryu JY, Lee J, Cho SJ, Seo J, Kim H, Choi CH. Identification of single-atom Ni site active toward electrochemical CO2 conversion to CO. J Am Chem Soc. 2021;143(2):925.

    CAS  Google Scholar 

  144. Wei H, Ning J, Cao X, Li X, Hao L. Benzotrithiophene-based covalent organic frameworks: construction and structure transformation under ionothermal condition. J Am Chem Soc. 2018;140(37):11618.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Key R&D Program of China (No. 2016YFB0302301), the National Natural Science Foundation of China (Nos. 51973240 and 51833011), and Guangdong YangFan Innovative & Entrepreneurial Research Team Program (No. 2016YT03C077).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiao-Feng Lin or Ding-Shan Yu.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, XT., Lin, XF. & Yu, DS. Metal-containing covalent organic framework: a new type of photo/electrocatalyst. Rare Met. 41, 1160–1175 (2022). https://doi.org/10.1007/s12598-021-01873-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-021-01873-3

Keywords

Navigation