Skip to main content

Advertisement

Log in

Conducting network interface modulated rate performance in LiFePO4/C cathode materials

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Carbon can play a critical role in electrode, especially for LiFePO4 cathode, not only serving as continuous conducting network for electron pathway, but also boosting Li+ diffusion through providing sufficient electrons. Here, we report the modulation of electrode/electrolyte interface to yield excellent rate performance by creating cross-linked conducting carbon network in LiFePO4/C cathode material. Such conducting networks inhibit agglomeration and growth of LiFePO4/C primary particles and hence lead to a short Li+ diffusion pathway. Furthermore, it also offers fast electron transmission rate and efficient electron for Li storage in the LiFePO4 sheath. The LiFePO4/C with carbon nanotubes (CNTs) delivers a discharge capacity of 150.9 mAh·g−1 at 0.1C (initial Coulombic efficiency of 96.4%) and an enhanced rate capability (97.2 mAh·g−1 at 20.0C). Importantly, it exhibits a high cycle stability with a capacity retention of 90.3% even after 800 cycles at 5.0C (0.85 A·g−1). This proposed interface design can be applied to a variety of battery electrodes that face challenges in electrical contact and ion transport.

Graphical abstract

摘要

在电极中, 尤其是磷酸铁锂电极, 碳材料起着十分重要的作用。通过构建导电网络提供充足的电子, 导电碳的加入可以促进电子传输和锂离子的扩散。本研究系统考察了煅烧过程中加入不同导电剂对LiFePO4/C正极材料倍率性能的影响。碳导电网络一方面抑制了LiFePO4/C一次颗粒的团聚和长大, 维持了较短的锂离子扩散路径;另一方面它保证了储锂过程中所需充足的电子及其高传输速率。研究结果表明, 加入碳纳米管的LiFePO4/C正极材料在0.1C (1.0C=170 mA·g-1)下的首次放电比容量为159.0 mAh·g-1, 首次库仑效率为96.4%;在20.0C的大倍率下放电比容量为97.2 mAh·g-1。此外, 在5.0C倍率下循环800次后, 它的容量保持率高达90.3%, 显示出较好的循环性能。这种界面设计思路对于需要提升电子传输和离子扩散的电极材料提供了借鉴。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Harper G, Sommerville R, Kendrick E, Driscoll L, Slater P, Stolkin R, Walton A, Christensen P, Heidrich O, Lambert S, Abbott A, Ryder K, Gaines L, Anderson P. Recycling lithium-ion batteries from electric vehicles. Nature. 2019;575(7781):75.

    Article  CAS  Google Scholar 

  2. Duffner F, Kronemeyer N, Tübke J, Leker J, Winter M, Schmuch R. Post-lithium-ion battery cell production and its compatibility with lithium-ion cell production infrastructure. Nat Energy. 2021;6(2):123.

    Article  CAS  Google Scholar 

  3. Liang Y, Dong H, Aurbach D, Yao Y. Current status and future directions of multivalent metal-ion batteries. Nat Energy. 2020;5(9):646.

    Article  CAS  Google Scholar 

  4. Manthiram A. A reflection on lithium-ion battery cathode chemistry. Nat Commun. 2020;11(1):1550.

    Article  CAS  Google Scholar 

  5. Padhi AK, Nanjundaswamy KS, Goodenough JB. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc. 1997;144(4):1188.

    Article  CAS  Google Scholar 

  6. Peng Z, Cao Y, Zhou Y, Hu G. Synthesis of LiFePO4 using FeSO4·7H2O byproduct from TiO2 production as raw material. Rare Met. 2009;28(6):612.

    Article  CAS  Google Scholar 

  7. Wang F, Zhang HK, Fan TF, Liu BX, Zhang XJ. Electrochemical characteristics of LiFePO4 with different raw material ratios and synthesis temperatures. Chin J Rare Met. 2020;44(12):1333.

    Google Scholar 

  8. Li H, Peng L, Wu D, Wu J, Zhu YJ, Hu X. Ultrahigh-capacity and fire-resistant LiFePO4-based composite cathodes for advanced lithium-ion batteries. Adv Energy Mater. 2019;9(10):1802930.

    Article  Google Scholar 

  9. Hu J, Huang W, Yang L, Pan F. Structure and performance of the LiFePO4 cathode material: from the bulk to the surface. Nanoscale. 2020;12(28):15036.

    Article  CAS  Google Scholar 

  10. Chung SY, Bloking JT, Chiang YM. Electronically conductive phospho-olivines as lithium storage electrodes. Nat Mater. 2002;1(2):123.

    Article  CAS  Google Scholar 

  11. Gibot P, Casas-Cabanas M, Laffont L, Levasseur S, Carlach P, Hamelet S, Tarascon JM, Masquelier C. Room-temperature single-phase Li insertion/extraction in nanoscale LixFePO4. Nat Mater. 2008;7(9):741.

    Article  CAS  Google Scholar 

  12. Malik R, Zhou F, Ceder G. Kinetics of non-equilibrium lithium incorporation in LiFePO4. Nat Mater. 2011;10(8):587.

    Article  CAS  Google Scholar 

  13. Andersson AS, Kalska B, Häggström L, Thomas JO. Lithium extraction/insertion in LiFePO4: an X-ray diffraction and Mössbauer spectroscopy study. Solid State Ion. 2000;130(1):41.

    Article  CAS  Google Scholar 

  14. Yamada A, Koizumi H, Nishimura SI, Sonoyama N, Kanno R, Yonemura M, Nakamura T, Kobayashi Y. Room-temperature miscibility gap in LixFePO4. Nat Mater. 2006;5(5):357.

    Article  CAS  Google Scholar 

  15. Nishimura SI, Kobayashi G, Ohoyama K, Kanno R, Yashima M, Yamada A. Experimental visualization of lithium diffusion in LixFePO4. Nat Mater. 2008;7(9):707.

    Article  CAS  Google Scholar 

  16. Delacourt C, Poizot P, Tarascon JM, Masquelier C. The existence of a temperature-driven solid solution in LixFePO4 for 0 ≤ x ≤ 1. Nat Mater. 2005;4(3):254.

    Article  CAS  Google Scholar 

  17. Liu H, Strobridge FC, Borkiewicz OJ, Wiaderek KM, Chapman KW, Chupas PJ, Grey CP. Capturing metastable structures during high-rate cycling of LiFePO4 nanoparticle electrodes. Science. 2014;344(6191):1252817.

    Article  Google Scholar 

  18. Bai P, Cogswell DA, Bazant MZ. Suppression of phase separation in LiFePO4 nanoparticles during battery discharge. Nano Lett. 2011;11(11):4890.

    Article  CAS  Google Scholar 

  19. Sharma N, Guo X, Du G, Guo Z, Wang J, Wang Z, Peterson VK. Direct evidence of concurrent solid-solution and two-phase reactions and the nonequilibrium structural evolution of LiFePO4. J Am Chem Soc. 2012;134(18):7867.

    Article  CAS  Google Scholar 

  20. Xi Y, Lu Y. Toward uniform in situ carbon coating on nano-LiFePO4 via a solid-state reaction. Ind Eng Chem Res. 2020;59(30):13549.

    Article  CAS  Google Scholar 

  21. Huang YH, Goodenough JB. High-rate LiFePO4 lithium rechargeable battery promoted by electrochemically active polymers. Chem Mater. 2008;20(23):7237.

    Article  CAS  Google Scholar 

  22. Zhao X, Zhao-Karger Z, Fichtner M, Shen X. Halide-based materials and chemistry for rechargeable batteries. Angew Chem Int Ed. 2020;59(15):5902.

    Article  CAS  Google Scholar 

  23. Tang H, Tan L, Xu J. Synthesis and characterization of LiFePO4 coating with aluminum doped zinc oxide. Trans Nonferrous Met Soc China. 2013;23(2):451.

    Article  CAS  Google Scholar 

  24. Cui X, Yi D, Li N, Zhang L, Zhang X, Yang D. Novel LaFeO3 coating modification for a LiFePO4 cathode. Energy Fuels. 2020;34(6):7600.

    Article  CAS  Google Scholar 

  25. Huang H, Yin SC, Nazar LF. Approaching theoretical capacity of LiFePO4 at room temperature at high rates. Electrochem Solid-State Lett. 2001;4(10):A170.

    Article  CAS  Google Scholar 

  26. Zhang K, Lee JT, Li P, Kang B, Kim JH, Yi GR, Park JH. Conformal coating strategy comprising N-doped carbon and conventional graphene for achieving ultrahigh power and cyclability of LiFePO4. Nano Lett. 2015;15(10):6756.

    Article  CAS  Google Scholar 

  27. Ahn CW, Choi JJ, Ryu J, Hahn BD, Kim JW, Yoon WH, Choi JH, Park DS. Microstructure and electrochemical properties of graphite and C-coated LiFePO4 films fabricated by aerosol deposition method for Li ion battery. Carbon. 2015;82:135.

    Article  CAS  Google Scholar 

  28. Galceran M, Guerfi A, Armand M, Zaghib K, Casas-cabanas M. The critical role of carbon in the chemical delithiation kinetics of LiFePO4. J Electrochem Soc. 2020;167(7):070538.

    Article  Google Scholar 

  29. Sun S, An Q, Tian Z, Zhao X, Shen X. Low-temperature synthesis of LiFePO4 nanoplates/C composite for lithium ion batteries. Energy Fuels. 2020;34(9):11597.

    Article  CAS  Google Scholar 

  30. Kang B, Ceder G. Battery materials for ultrafast charging and discharging. Nature. 2009;458(7235):190.

    Article  CAS  Google Scholar 

  31. Marks T, Trussler S, Smith AJ, Xiong D, Dahn JR. A guide to Li-ion coin-cell electrode making for academic researchers. J Electrochem Soc. 2011;158(1):A51.

    Article  CAS  Google Scholar 

  32. Gören A, Costa CM, Silva MM, Lanceros-Méndez S. State of the art and open questions on cathode preparation based on carbon coated lithium iron phosphate. Compos B. 2015;83:333.

    Article  Google Scholar 

  33. Hu S, Li Y, Yin J, Wang H, Yuan X, Li Q. Effect of different binders on electrochemical properties of LiFePO4/C cathode material in lithium ion batteries. Chem Eng J. 2014;237:497.

    Article  CAS  Google Scholar 

  34. Li W, Garg A, Le MLP, Ruhatiya C, Gao L, Tran VM. Electrochemical performance investigation of LiFePO4/C0.15-x (x=0.05, 0.1, 0.15 CNTs) electrodes at various calcination temperatures: experimental and intelligent modelling approach. Electrochim Acta. 2020;330:135314.

    Article  CAS  Google Scholar 

  35. Boonchom B, Danvirutai C. Thermal decomposition kinetics of FePO4·3H2O precursor to synthetize spherical nanoparticles FePO4. Ind Eng Chem Res. 2007;46(26):9071.

    Article  CAS  Google Scholar 

  36. Vedala S, Sushama M. Urea assisted combustion synthesis of LiFePO4/C nano composite cathode material for lithium ion battery storage system. Mater Today Proc. 2018;5(1):1649.

    Article  CAS  Google Scholar 

  37. Toprakci O, Toprakci HAK, Ji L, Xu G, Lin Z, Zhang X. Carbon nanotube-loaded electrospun LiFePO4/carbon composite nanofibers as stable and binder-free cathodes for rechargeable lithium-ion batteries. ACS Appl Mater Interfaces. 2012;4(3):1273.

    Article  CAS  Google Scholar 

  38. Zhang LL, Liang G, Ignatov A, Croft MC, Xiong XQ, Hung IM, Huang YH, Hu XL, Zhang WX, Peng YL. Effect of vanadium incorporation on electrochemical performance of LiFePO4 for lithium-ion batteries. J Phys Chem C. 2011;115(27):13520.

    Article  CAS  Google Scholar 

  39. Shen L, Zhang X, Uchaker E, Yuan C, Cao G. Li4Ti5O12 nanoparticles embedded in a mesoporous carbon matrix as a superior anode material for high rate lithium ion batteries. Adv Energy Mater. 2012;2(6):691.

    Article  CAS  Google Scholar 

  40. Wu J, Dathar GKP, Sun C, Theivanayagam MG, Applestone D, Dylla AG, Manthiram A, Henkelman G, Goodenough JB, Stevenson KJ. In situ Raman spectroscopy of LiFePO4: size and morphology dependence during charge and self-discharge. Nanotechnology. 2013;24(42):424009.

    Article  Google Scholar 

  41. Paraguassu W, Freire PTC, Lemos V, Lala SM, Montoro LA, Rosolen JM. Phonon calculation on olivine-like LiMPO4 (M = Ni, Co, Fe) and Raman scattering of the iron-containing compound. J Raman Spectrosc. 2005;36(3):213.

    Article  CAS  Google Scholar 

  42. Zhang H, Zhang W, Cheng J, Cao G, Yang Y. Acetylene black agglomeration in activated carbon based electrochemical double layer capacitor electrodes. Solid State Ion. 2008;179(33):1946.

    Article  CAS  Google Scholar 

  43. Xin S, Guo YG, Wan LJ. Nanocarbon networks for advanced rechargeable lithium batteries. Acc Chem Res. 2012;45(10):1759.

    Article  CAS  Google Scholar 

  44. Zhang J, Nie N, Liu Y, Wang J, Yu F, Gu J, Li W. Boron and nitrogen codoped carbon layers of LiFePO4 improve the high-rate electrochemical performance for lithium ion batteries. ACS Appl Mater Interfaces. 2015;7(36):20134.

    Article  CAS  Google Scholar 

  45. Zhu J, Yoo K, El-halees I, Kisailus D. Solution deposition of thin carbon coatings on LiFePO4. ACS Appl Mater Interfaces. 2014;6(23):21550.

    Article  CAS  Google Scholar 

  46. Zhu Y, Wang C. Novel CV for phase transformation electrodes. J Phys Chem C. 2011;115(3):823.

    Article  CAS  Google Scholar 

  47. Dreyer W, Jamnik J, Guhlke C, Huth R, Moškon J, Gaberšček M. The thermodynamic origin of hysteresis in insertion batteries. Nat Mater. 2010;9(5):448.

    Article  CAS  Google Scholar 

  48. Ho C, Raistrick ID, Huggins RA. Application of A-C techniques to the study of lithium diffusion in tungsten trioxide thin films. J Electrochem Soc. 1980;127(2):343.

    Article  CAS  Google Scholar 

  49. de la Torre-Gamarra C, Sotomayor ME, Sanchez JY, Levenfeld B, Várez A, Laïk B, Pereira-Ramos JP. High mass loading additive-free LiFePO4 cathodes with 500 μm thickness for high areal capacity Li-ion batteries. J Power Sources. 2020;458:22803.

    Google Scholar 

  50. Zhang H, Liu D, Qian X, Zhao C, Xu Y. A novel nano structured LiFePO4/C composite as cathode for Li-ion batteries. J Power Sources. 2014;249:431.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Nos. 51902108, 51762006 and 51774100), Guangxi Innovation Driven Development Subject (No. GUIKE AA19182020), Guangxi Natural Science Foundation (Nos. 2018GXNSFBA138002 and 2021GXNSFDA075012), Guangxi Technology Base and Talent Subject (No. GUIKE AD18126001) and Special Fund for Guangxi Distinguished Expert.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Si-Jiang Hu or Hong-Qiang Wang.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 32602 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, JM., Chen, ZQ., Li, Y. et al. Conducting network interface modulated rate performance in LiFePO4/C cathode materials. Rare Met. 41, 951–959 (2022). https://doi.org/10.1007/s12598-021-01838-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-021-01838-6

Keywords

Navigation