Skip to main content
Log in

Surface roughness affects metastable non-wetting behavior of silicate melts on thermal barrier coatings

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Airborne silicate pollutants in flight corridors pose a serious threat to aviation safety whose severity is directly linked to the wettability of molten silicates on thermal barrier coatings (TBCs) at high temperatures (1200–2000 °C). Despite its importance, the wettability of silicate melt on TBCs has not been well investigated. In particular, the surface morphology characteristics of TBCs can be expected to have a first-order effect on the wettability of silicate melt on such TBCs. Here, a series of atmospheric plasma spray (APS) yttria-stabilized zirconia (YSZ) TBCs with varying surface roughness were generated through the application of mechanical polishing. The metastable non-wetting behavior of three representative types of airborne silicate ash (volcanic ash, fly ash and a synthetic calcium–magnesium–aluminum–silicates (CMAS) powder) on these TBCs with varying surface roughness was investigated. It was observed that the smoother the surface of TBCs was, the larger the contact angle was with the molten silicate melts, and consequently, the smaller the area of damage was on the TBCs. Thus, the reduction in TBCs surface roughness (here via mechanical polishing) led to an improvement in the wetting and spreading resistance of TBCs to silicate melts at high temperature. In support of these observations and conclusions, the surface morphology of the TBC (both before and after polishing) had been characterized, and the mechanism of the surface roughness-dependence of wettability had been discussed. These results should contribute to reducing the deposition rate of silicate melt on TBCs, thus extending the lifetime of turbine blades and reducing maintenance costs.

摘要

大气中的硅酸盐污染物 (Calcium–magnesium–aluminum–silicates, CMAS, 来自 于火山喷发, 沙尘暴、工业燃料燃烧、汽车尾气排放与PM2.5) 对航空安全构成了严重威胁, 这种熔融硅酸盐对航空发动机的破坏程度是由其在高温下 (1200–2000 ℃) 对热障涂层 (TBCs) 的润湿性决定的提高TBCs 的物理抗CMAS 润湿性的方法亟待深入研究。本文采用机械抛光的方法制备了一系列具有不同表面粗糙度的大气等离子喷涂 (APS) 氧化钇稳定氧化锆 (YSZ)TBCs, 并研究了三类代表性的硅酸盐粉末 (火山灰、粉煤灰和合成CMAS粉末) 在不同表面粗糙度TBCs上的润湿行为。试验结果表明, TBCs表面粗糙度的降低, 使其与硅酸盐熔体的接触角增大, 润湿和铺展面积减小, TBCs粗糙度对三类硅酸盐粉末熔体的润湿性的影响具有一致规律。通过对TBCs抛光前后的表面形貌表征与理论分析, 探讨了TBCs 表面粗糙度的降低对其高温抗CMAS性能提升的影响机理。本文的结论将为降低硅酸盐熔体在TBCs上的沉积率提供定量的理论和数据支撑, 为有效延长涡轮叶片的使用寿命, 降低维护成本打下基础。

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mazzocchi M, Hansstein F, Ragona M. The 2010 volcanic ash cloud and its financial impact on the european airline industry. CESifo Forum. 2010;11(2):92.

    Google Scholar 

  2. Prata AJ, Tupper A. Aviation hazards from volcanoes: the state of the science. Nat Hazards. 2009;51(2):239.

    Google Scholar 

  3. Baines P, Sparks R. Dynamics of giant volcanic ash clouds from super volcanic eruptions. Geophys Res Lett. 2005. https://doi.org/10.1029/2005GL024597.

    Article  Google Scholar 

  4. Poerschke DL, Jackson RW, Levi CG. Siliceous deposit degradation of engineered coatings in gas turbines: progress toward models and materials solutions. Annu Rev Mater Res. 2017;47(1):297.

    CAS  Google Scholar 

  5. Yu ZY, Wei LL, Guo XY, Zhang BP, He Q, Guo HB. Microstructural evolution, mechanical properties and degradation mechanism of PS-PVD quasi-columnar thermal barrier coatings exposed to glassy CMAS deposits. Rare Met. 2018. https://doi.org/10.1007/s12598-018-1128-5.

    Article  Google Scholar 

  6. Guffanti M, Tupper A. Volcanic Ash Hazards and Aviation Risk. Volcanic Hazards, Risks and Disasters. Amsterdam: Elsevier; 2015. 87.

    Google Scholar 

  7. Guffanti M, Mayberry GC, Casadevall TJ, Wunderman R. Volcanic hazards to airports Nat Hazards. 2009;51(2):287.

    Google Scholar 

  8. Smialek JL, Archer FA, Garlick RG. Turbine airfoil degradation in the persian gulf war. JOM. 1994;46(12):39.

    CAS  Google Scholar 

  9. Dunn M, Padova C, Moller J, Adams R. Performance deterioration of a turbofan and a turbojet engine upon exposure to a dust environment. J Eng Gas Turbine Power. 1987;109(3):336.

    Google Scholar 

  10. Cardwell ND, Thole KA, Burd SW. Investigation of sand blocking within impingement and film-cooling holes. J Turbomach. 2010;132(2):021020.

    Google Scholar 

  11. Woods AW, Wohletz K. Dimensions and dynamics of co-ignimbrite eruption columns. Nature. 1991;350(6315):225.

    Google Scholar 

  12. Self S. The effects and consequences of very large explosive volcanic eruptions. Philos Trans A Math Phys Eng Sci. 1845;2006(364):2073.

    Google Scholar 

  13. Mastin LG, Guffanti M, Servranckx R, Webley P, Barsotti S, Dean K, Durant A, Ewert JW, Neri A, Rose WI, Schneider D, Siebert L, Stunder B, Swanson G, Tupper A, Volentik A, Waythomas CF. A multidisciplinary effort to assign realistic source parameters to models of volcanic ash-cloud transport and dispersion during eruptions. J Volcanology Geotherm. 2009;186(1–2):10.

    CAS  Google Scholar 

  14. Rose WI, Durant AJ. Fine ash content of explosive eruptions. J Volcanology Geotherm. 2009;186(1–2):32.

    CAS  Google Scholar 

  15. Casadevall TJ (eds) Volcanic ash and aviation safety: proceedings of the first International symposium on volcanic ash and aviation safety. US Geological Survey Bulletin 2047. 9.

  16. Dean J, Taltavull C, Clyne TW. Influence of the composition and viscosity of volcanic ashes on their adhesion within gas turbine aeroengines. Acta Mater. 2016;109:8.

    CAS  Google Scholar 

  17. Krause AR, Garces HF, Dwivedi G, Ortiz AL, Sampath S, Padture NP. Calcia-magnesia-alumino-siliceous (CMAS)-induced degradation and failure of air plasma sprayed yttria-stabilized zirconia thermal barrier coatings. Acta Mater. 2016;105:355.

    CAS  Google Scholar 

  18. Rose WI. Interaction of aircraft and explosive eruption clouds–a volcanologist’s perspective. AIAA J. 1987;25:52.

    CAS  Google Scholar 

  19. Hamed A, Tabakoff WC, Wenglarz RV. Erosion and deposition in turbomachinery. J Propul Power. 2006;22(2):350.

    CAS  Google Scholar 

  20. Abelson PH. Jet-powered flight. Science. 1991;254(5031):497.

    CAS  Google Scholar 

  21. Chen WR, Zhao LR. Review-volcanic ash and its influence on aircraft engine components. Procedia Eng. 2015;99:795.

    Google Scholar 

  22. Bonn D, Eggers J, Indekeu J. Wetting and spreading Rev Mod Phys. 2009;81(2):739.

    CAS  Google Scholar 

  23. Dunn MG, Baran AJ, Miatech J. Operation of gas turbine engines in volcanic ash clouds. J Eng Gas Turbines Power-Trans ASME. 1996;118(4):724.

    Google Scholar 

  24. Zhao H, Levi CG, Wadley HNG. Molten siliceous interactions with thermal barrier coatings. Surf Coat Technol. 2014;251:74.

    CAS  Google Scholar 

  25. Giordano D, Nichols ARL, Dingwell DB. Glass transition temperatures of natural hydrous melts: a relationship with shear viscosity and implications for the welding process. J Volcanology Geotherm. 2005;142(1–2):105.

    CAS  Google Scholar 

  26. Xiao S, Lirong L, Wenfu C, Zou Z, Guo F, He L, Zhang A, Zhao X, Xiao P. Pore filling behavior of YSZ under CMAS attack: implications for designing corrosion-resistant thermal barrier coatings. J Am Ceram Soc. 2018;101(12):5756.

    Google Scholar 

  27. Drexler JM, Gledhill AD, Shinoda K, Vasiliev AL, Reddy KM, Sampath S, Padture NP. Jet engine coatings for resisting volcanic ash damage. Adv Mater. 2011;23(21):2419.

    CAS  Google Scholar 

  28. Casadevall TJ. Volcanic hazards and aviation safety—lessons of the past decade. FAA Aviation Safety J. 1992;2:9.

    Google Scholar 

  29. Padture NP. Advanced structural ceramics in aerospace propulsion. Nat Mater. 2016;15(804):804.

    CAS  Google Scholar 

  30. Padture NP, Gell M, Jordan EH. Thermal barrier coatings for gas-turbine engine applications. Science. 2002;296(5566):280.

    CAS  Google Scholar 

  31. Clarke DR, Oechsner M, Padture NP. Thermal-barrier coatings for more efficient gas-turbine engines. MRS Bull. 2012;37(10):891.

    CAS  Google Scholar 

  32. Zhou ZM, Peng H, Zheng L. Thermal cycling performance of La2Ce2O7/YSZ TBCs with Pt/Dy co-doped NiAl bond coat on single crystal superalloy. Rare Met. 2018. https://doi.org/10.1007/s12598-017-0980-z.

    Article  Google Scholar 

  33. Darolia R. Thermal barrier coatings technology: critical review, progress update, remaining challenges and prospects. Int Mater Rev. 2013;58(6):315.

    CAS  Google Scholar 

  34. Cao X, Vassen R, Stoever D. Ceramic materials for thermal barrier coatings. J Eur Ceram Soc. 2004;24(1):1.

    CAS  Google Scholar 

  35. Pan W, Phillpot SR, Wan C, Chernatynskiy A, Qu Z. Low thermal conductivity oxides. MRS Bull. 2012;37(10):917.

    CAS  Google Scholar 

  36. Drexler JM, Shinoda K, Ortiz AL, Li D, Vasiliev AL, Gledhill AD, Sampath S, Padture NP. Air-plasma-sprayed thermal barrier coatings that are resistant to high temperature attack by glassy deposits. Acta Mater. 2010;58(20):6835.

    CAS  Google Scholar 

  37. Turcer LR, Padture NP. Towards multifunctional thermal environmental barrier coatings (TEBCs) based on rare-earth pyrosiliceous solid-solution ceramics. Scr Mater. 2018;154:111.

    CAS  Google Scholar 

  38. Liu MJ, Zhang G, Lu YH. Plasma spray–physical vapor deposition toward advanced thermal barrier coatings: a review. Rare Met. 2002;39(5):479.

    Google Scholar 

  39. Perepezko JH. The hotter the engine, the better. Science. 2009;326:1068.

    CAS  Google Scholar 

  40. Schulz U, Braue W. Degradation of La2Zr2O7 and other novel EB-PVD thermal barrier coatings by CMAS (CaO-MgO-Al2O3-SiO2) and volcanic ash deposits. Surf Coat Tech. 2013;235:165.

    CAS  Google Scholar 

  41. Strangman T, Raybould D, Jamell A, Baker W. Damage mechanisms, life prediction, and development of EB-PVD thermal barrier coatings for turbine airfoils–Science Direct. Surf Coat Technol. 2007;202(4–7):658.

    CAS  Google Scholar 

  42. Stott FH, de Wet DJ, Taylor R. Degradation of thermal-barrier coatings at very high temperatures. MRS Bull. 1994;19(10):46.

    CAS  Google Scholar 

  43. Wellman R, Whitman G, Nicholls JR. CMAS corrosion of EB PVD TBCs: identifying the minimum level to initiate damage. Int J Refract Met Hard Mater. 2010;28(1):124.

    CAS  Google Scholar 

  44. Zhao H, Levi CG, Wadley HNG. Molten silicate interactions with thermal barrier coatings. Surf Coat Techol. 2014;251:74.

    CAS  Google Scholar 

  45. Zhang B, Song W, Guo H. Wetting, infiltration and interaction behaviour of CMAS towards columnar YSZ coatings deposited by plasma spray physical vapor. J Eur Ceram Soc. 2018;38(10):3564.

    CAS  Google Scholar 

  46. Wu J, Guo HB, Gao YZ, Gong SK. Microstructure and thermo-physical properties of yttria stabilized zirconia coatings with CMAS deposits. J Eur Ceram Soc. 2011;31(10):1881.

    CAS  Google Scholar 

  47. Li L, Clarke DR. Effect of cmas infiltration on radiative transport through an EB-PVD thermal barrier coating. Int J Appl Ceram Technol. 2008;5(3):278.

    CAS  Google Scholar 

  48. Braue W, Mechnich P. Recession of an EB-PVDYSZ coated turbine blade by CaSO4 and Fe, Ti-rich CMAS-type deposits. J Am Ceram Soc. 2011;94(12):4483.

    CAS  Google Scholar 

  49. Mohan P, Yao B, Patterson T. Electrophoretically deposited alumina as protective overlay for thermal barrier coatings against CMAS degradation. Surf Coat Technol. 2009;204(6):797.

    CAS  Google Scholar 

  50. Wei LL, Peng H, Zheng L, Sun JY, Guo HB. Processing and oxidation behavior of Pt-diffused coatings. Rare Met. 2020;39(8):902.

    CAS  Google Scholar 

  51. Krämer S, Yang J, Levi CG. Infiltration-inhibiting reaction of gadolinium zirconate thermal barrier coatings with cmas melts. J Am Ceram Soc. 2010;91(2):576.

    Google Scholar 

  52. Aygun A, Vasiliev AL, Padture NP, Ma XJAM. Novel thermal barrier coatings that are resistant to high-temperature attack by glassy deposits. Acta Mater. 2007;55(20):6734.

    CAS  Google Scholar 

  53. Perrudin F, Rio C, Vidal-Sétif MH. Gadolinium oxide solubility in molten silicate: dissolution mechanism and stability of Ca2Gd8(SiO4)6O2 and Ca3Gd2(Si3O9)2 silicate phases. J Eur Ceram Soc. 2017;37(7):2657.

    CAS  Google Scholar 

  54. Yang S, Song W, Lavallee Y, Zhou X, Dingwell DB, Guo H. Dynamic spreading of re-melted volcanic ash bead on thermal barrier coatings. Corros Sci. 2020;170:108659.

    CAS  Google Scholar 

  55. Song W, Yang S, Fukumoto M, Lavallée Y, Lokachari S, Guo H, You Y, Dingwell DB. Impact interaction of in-flight high-energy molten volcanic ash droplets with jet engines. Acta Mater. 2019;171:119.

    CAS  Google Scholar 

  56. Giordano D, Russell JK, Dingwell DB. Viscosity of magmatic liquids: a model. Earth Planet Sci Lett. 2008;271(1–4):123.

    CAS  Google Scholar 

  57. Dingwell DB, Webb SL. Relaxation in siliceous melts. Eur J Mineral. 1990;2(4):427.

    CAS  Google Scholar 

  58. Song W, Lavallée Y, Hess KU, Kueppers U, Cimarelli C, Dingwell DB. Volcanic ash melting under conditions relevant to ash turbine interactions. Nature Com. 2016;7:10795.

    CAS  Google Scholar 

  59. Sigurdsson H. The Encyclopedia of Volcanoes. 2nd ed. Amsterdam: Elsevier; 2015. 115.

    Google Scholar 

  60. Bagdassakov N, Dorfman A, Dingwell DB. Effect of alkalis, phosphorus, and water on the surface tension of haplogranite melt. Am Mineral. 2000;85(1):33.

    Google Scholar 

  61. Melchior T, Biaesing M, Puetz G. Surface tension measurements of coal ash slags under reducing conditions at elevated pressures. Fuel. 2011;90(1):280.

    CAS  Google Scholar 

  62. Gennes PGD, Brochard-Wyart F, Quéré D, Reisinger A. Capillarity and wetting phenomena: drops, bubbles, pearls, waves. Phys Today. 2004;57(12):66.

    Google Scholar 

  63. Heslot F, Cazabat AM, Levinson P. Experiments on wetting on the scale of nanometers: influence of the surface energy. Phys Rev Lett. 1990;65(5):599.

    CAS  Google Scholar 

  64. Zhou X, Wang J, Yuan J, Sun J, Dong S, He L, Cao X. Calcium-magnesium-alumino-siliceous induced degradation and failure of La2(Zr0.7Ce0.3)2O7/YSZ double-ceramic-layer thermal barrier coatings prepared by electron beam-physical vapor deposition. J Eur Ceram Soc, 2018;38(4):1897.

  65. Quéré D. Rough ideas on wetting. Phys A. 2002;313(1–2):32.

    Google Scholar 

  66. Wu M, Chang L, Zhang L, He X, Qu X. Effects of roughness on the wettability of high temperature wetting system. Surf Coat Techol. 2016;287:145.

    CAS  Google Scholar 

  67. Good RJ. A thermodynamic derivation of Wenzel’s modification of young’s equation for contact angles; together with a theory of hysteresis1. J Am Chem Soc. 1952;74(20):5041.

    CAS  Google Scholar 

  68. Spitsberg I, Steibel J. Thermal and environmental barrier coatings for SiC/SiC CMCs in aircraft engine applications. Int J Appl Ceram Technol. 2004;1(4):291.

    CAS  Google Scholar 

  69. Strangman T, Raybould D, Jameel A, Baker W. Damage mechanisms, life prediction, and development of EB-PVD thermal barrier coatings for turbine airfoils. Surf Coat Technol. 2007;202(4–7):658.

    CAS  Google Scholar 

  70. Wenzel RN. Resistance of solid surfaces to wetting by water. Trans Faraday Soc. 1936;28(8):988.

    CAS  Google Scholar 

  71. Wenzel RN. Surface roughness and contact angle. J Phys Chem. 1949;53(9):1466.

    CAS  Google Scholar 

  72. Peng XF, Wang XD, Lee DJ. Description of dynamic contact angle on a rough solid surface. Asme Heat Transfer Summer Conference. Las Vegas, Nevada, USA. 2003. 283.

  73. Giacomello A, Schimmele L, Dietrich S. Wetting hysteresis induced by nanodefects. Proc Natl Acad Sci USA. 2016;113(3):E262.

    CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Science and Technology Major Project (No. 2017-VI-0010-0081), the Program of the Ministry of Education of China for Introducing Talents of Discipline to Universities (No. B17002), the National Natural Science Foundation of China (No. 51901011), the “Freigeist” Fellowship of the Volkswagenstiftung on “Volcanic Ash Deposition in Jet Engines” (VADJEs, No. 89705) and China Scholarship Council (CSC). We are grateful to U. Küppers for providing the volcanic ash material, to C. Cimarelli for assistance with the SEM analyses.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wen-Jia Song or Hong-Bo Guo.

Ethics declarations

Conflicts of interests

The authors declare that they have no conflict of interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 7673 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, SJ., Song, WJ., Dingwell, D.B. et al. Surface roughness affects metastable non-wetting behavior of silicate melts on thermal barrier coatings. Rare Met. 41, 469–481 (2022). https://doi.org/10.1007/s12598-021-01773-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-021-01773-6

Keywords

Navigation