Skip to main content

Advertisement

Log in

A review of energy and environment electrocatalysis based on high-index faceted nanocrystals

  • Review
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Today, nanocrystals enclosed by high-index facets (HIFs) are attracting widely attentions of researchers due to their tremendous potential in the field of catalysis, especially in electrocatalysis, such as electro-oxidation of small organic molecule (such as formic acid, methanol, and ethanol), oxygen reduction reaction (ORR), hydrogen evolution reaction (HER), as well as the oxygen evolution reaction (OER). However, the practical applications of nanocrystals enclosed by HIFs still face many limitations in preparations of advanced electrocatalysts, including preparation strategy, limited life-time and stability. The development of advanced electrocatalysts enclosed with HIFs is crucial for solving these problems if the large-scale application of them is to be realized. Herein, we firstly detailedly demonstrate the identification methods of nanocrystals enclosed by HIFs, and then preparation strategies are elaborated in detail in this review. Current advanced nanocrystals enclosed by HIFs in electrocatalytic application are also summarized and we present representative achievements to further reveal the relationship of excellent electrocatalytic performance and nanocrystals with HIFs. Finally, we predict the remaining challenges and present our perspectives with regards of design strategies of improving electrocatalytic performance of Pt-based catalysts in the future.

摘要

近年来,含高指数晶面 (HIFs)的纳米晶吸引了研究者广泛的关注。由于其在催化领域的巨大潜力 , 特别是在电催化领域 , 例如有机小分子(如甲酸、甲醇和乙醇)的电氧化反应 , 氧还原反应 (ORR) , 析氢反应 (HER) , 以及析氧反应 (OER)。然而 , 在制备高性能电催化剂方面 , 含高指数晶面的纳米晶的实际应用在制备策略、寿命和稳定性方面受到诸多限制。因此 , 若要实现其规模化应用 , 关键问题在于对高指数晶面纳米晶的优化设计与性能改良。本文首先详细介绍了高指数晶面的识别方法 , 并详细阐述了其制备方法。此外 , 本文还总结了高指数晶面纳米晶体在电催化中的应用 , 以进一步揭示其优异的电催化性能和高指数晶面之间的关系。最后 , 我们对接下来高指数晶面纳米晶所面临的挑战进行了预测 , 并提出了未来在设计策略方面改进Pt基催化剂电催化性能的建议。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Reproduced with permission from Ref. [17]. Copyright 2016, Wiley–VCH. b HRTEM image of PtCu2 CONFs and atomic arrangement of HIFs. Reproduced with permission from Ref. [18]. Copyright 2016, American Chemical Society. c Cross section of atomic arrangement of n (111)–(111) surface. Reproduced with permission from Ref. [19]. Copyright 2015, American Chemical Society

Fig. 3

Reproduced with permission from Ref. [30]. Copyright 2014, Wiley–VCH. ce TEM images, FFT patterns and geometric models of a single convex polyhedral Au@Pd NC oriented the different directions. Reproduced with permission from Ref. [31]. Copyright 2012, Wiley–VCH

Fig. 4

Reproduced with permission from Ref. [32]. Copyright 2020, CCS Chem

Fig. 5

Reproduced with permission from Ref. [35]. Copyright 2010, American Chemical Society

Fig. 6

Reproduced with permission from Ref. [40]. Copyright 2017, American Chemical Society

Fig. 7

Reproduced with permission from Ref. [51]. Copyright 2017, American Chemical Society

Fig. 8

Reproduced with permission from Ref. [52]. Copyright 2018, Springer

Fig. 9

Reproduced with permission from Ref. [66]. Copyright 2019, Science

Fig. 10

Reproduced with permission from Ref. [49]. Copyright 2019, Elsevier. k Synthesis schematic diagram, TEM image and electrocatalytic performance of Pt CNC; CV curves for electro-oxidation of l methanol and m formic acid by Pt CNCs, commercial Pt black, and Pt/C. Reproduced with permission from Ref. [84]. Copyright 2012, American Chemical Society

Fig. 11

Reproduced with permission from Ref. [92]. Copyright 2019, American Chemical Society

Fig. 12

Reproduced with permission from Ref. [94]. Copyright 2012, Tsinghua University Press. f, g Illustration and h i TEM images of sub-10 nm THH Pt NCs synthesized via an electrochemically seedmediated method, where Pt nanoparticles (3.2 nm) supported on graphene were used as crystal seeds and then grew into THH Pt NCs (9.5 nm) through an electrochemical square-wave potential treatment; TEM images and size histograms of commercial Pt/C j before and k after electrochemical SWP treatment; l cyclic voltammograms of commercial Pt/C before and after SWP treatment for ethanol oxidation; m remaining activity of THH-Pt/G, Pt/C-SWP, and Pt/C for ethanol oxidation after 1000 potential cycles. Reproduced with permission from Ref. [95]. Copyright 2016, American Chemical Society

Fig. 13

Reproduced with permission from Ref. [82]. Copyright 2018, American Chemical Society. i In situ FTIR spectra of methanol oxidation on variation of integrated band intensity of CO2 at 2350 cm−1 at different potentials; in situ FTIR spectra of methanol oxidation on j CNC Pt–Fe–Mn and k UCNC Pt–Fe–Mn. Reproduced with permission from Ref. [72]. Copyright 2019, Royal Society of Chemistry

Fig. 14

Reproduced with permission from Ref. [108]. Copyright 2018, Royal Society of Chemistry

Fig. 15

Reproduced with permission from Ref. [109]. Copyright 2017, Elsevier

Fig. 16
Fig. 17

Reproduced with permission from Ref. [114]. Copyright 2018, Elsevier

Fig. 18

Reproduced with permission from Ref. [124]. Copyright 2017, Elsevier

Fig. 19

Reproduced with permission from Ref. [136]. Copyright 2017, American Chemical Society

Fig. 20

Reproduced with permission from Ref. [116]. Copyright 2015, American Chemical Society

Fig. 21

Copyright 2019, Shanghai Jiao Tong University Press

Fig. 22

Reproduced with permission from Ref. [139]. Copyright 2016, Royal Society of Chemistry

Fig. 23

Copyright 2007, American Association for the Advancement of Science

Fig. 24
Fig. 25

Copyright 2018, Royal Society of Chemistry. images for PtNi/mPG was reproduced with permission from Ref. [153]. Copyright 2019, Royal Society of Chemistry; images for PtCo/rGO was reproduced with permission from Ref. [154]. Copyright 2015, Wiley–VCH

Fig. 26

Copyright 2018, Wiley–VCH; image for multiframe was reproduced with permission from Ref. [159]. Copyright 2018, American Chemical Society; image for nanosponge was reproduced with permission from Ref. [160]. Copyright 2016, American Chemical Society; image for ultrathin NWs was reproduced with permission from Ref. [161]. Copyright 2018, Royal Society of Chemistry; image for porous NWs was reproduced with permission from Ref. [162]. Copyright 2017, Wiley–VCH

Similar content being viewed by others

References

  1. Banham D, Ye S. Current status and future development of catalyst materials and catalyst layers for proton exchange membrane fuel cells: an industrial perspective. ACS Energy Lett. 2017;2(3):629.

    Article  CAS  Google Scholar 

  2. Yu L, Zhou TT, Cao SH, Tai XS, Liu LL, Wang Y. Suppressing the surface passivation of Pt–Mo nanowires via constructing Mo–Se coordination for boosting HER performance. Nano Res. 2020. https://doi.org/10.1007/s12274-020-3269-8.

    Article  Google Scholar 

  3. Wang Y, Wang DS, Li YD. A fundamental comprehension and recent progress in advanced Pt-based ORR nanocatalysts. SmartMat. 2021. https://doi.org/10.1002/smm2.1023.

    Article  Google Scholar 

  4. Li MX, Wang Y, Cai J, Li YR, Liu YJ, Dong Y, Li SN, Yuan XL, Zheng X, Dai XP. Surface sites assembled-strategy on Pt–Ru nanowires for accelerated methanol oxidation. Dalton Trans. 2020;49:13999.

    Article  CAS  Google Scholar 

  5. Dou YH, He CT, Zhang L. How cobalt and iron doping determine the oxygen evolution electrocatalytic activity of NiOOH. Cell Rep. 2020;1:100077.

    Google Scholar 

  6. Yu LP, Zhang J, Dang YL. In situ growth of Ni2P–Cu3P bimetallic phosphide with bicontinuous structure on self-supported NiCuC substrate as an efficient hydrogen evolution reaction electrocatalyst. ACS Catal. 2019;9:6919.

    Article  CAS  Google Scholar 

  7. Yin HJ, Dou YH, Chen S. 2D electrocatalysts for converting earth-abundant simple molecules into value-added. Adv Mater. 2020;32:1904870.

    Article  CAS  Google Scholar 

  8. Chen Q, Jia Y, Xie S, Xie Z. Well-faceted noble-metal nanocrystals with nonconvex polyhedral shapes. Chem Soc Rev. 2016;45(11):3207.

    Article  CAS  Google Scholar 

  9. Zhang H, Jin M, Xia Y. Noble-metal nanocrystals with concave surfaces: synthesis and applications. Angew Chem Int Ed Engl. 2012;51(31):7656.

    Article  CAS  Google Scholar 

  10. Lee SW, Chen S, Sheng WC, Yabuuchi N, Kim YT, Mitani T, Vescovo YSH. Roles of surface steps on Pt nanoparticles in electro-oxidation of carbon monoxide and methanol. J Am Chem Soc. 2009;131:15669.

    Article  CAS  Google Scholar 

  11. Lim B, Xia Y. Metal nanocrystals with highly branched morphologies. Angew Chem Int Ed Engl. 2011;50(1):76.

    Article  CAS  Google Scholar 

  12. Lang B, Joyner RW, Somorjai GA. Low energy electron diffraction studies of chemisorbed gases on stepped surfaces of platinum. Surf Sci. 1972;30(2):454.

    Article  CAS  Google Scholar 

  13. Van Hove MA, Somorjai GA. A new microfacet notation for high-Miller-index surfaces of cubic materials with terrace, step and kink structures. Surf Sci. 1980;92(2–3):489.

    Article  Google Scholar 

  14. Lebedeva NP, Koper MTM, Herrero E, Feliu JM, van Santen RA. Cooxidation on stepped Pt[n(111)×(111)] electrodes. J Electroanal Chem. 2000;487:37.

    Article  CAS  Google Scholar 

  15. Yu Y, Zhang QB, Liu B, Lee JY. Synthesis of nanocrystals with variable high-index Pd facets through the controlled heteroepitaxial growth of trisoctahedral Au templates. J Am Chem Soc. 2010;132:18258.

    Article  CAS  Google Scholar 

  16. Quan ZW, Wang YX, Fang J. High-index faceted noble metal nanocrystals. Acc Chem Res. 2013;46(2):191.

    Article  CAS  Google Scholar 

  17. Luo S, Tang M, Shen PK, Ye S. Atomic-scale preparation of octopod nanoframes with high-index facets as highly active and stable catalysts. Adv Mater. 2017;29(8):1601687.

    Article  CAS  Google Scholar 

  18. Luo S, Shen PK. Concave platinum–copper octopod nanoframes bounded with multiple high-index facets for efficient electrooxidation catalysis. ACS Nano. 2017;11(12):11946.

    Article  CAS  Google Scholar 

  19. Yue J, Du Z, Shao M. Mechanisms of enhanced electrocatalytic activity for oxygen reduction reaction on high-index platinum n(111)-(111) surfaces. J Phys Chem Lett. 2015;6(17):3346.

    Article  CAS  Google Scholar 

  20. Yu J, Low J, Xiao W, Zhou P, Jaroniec M. Enhanced photocatalytic CO2-reduction activity of anatase TiO2 by co-exposed 001 and 101 facets. J Am Chem Soc. 2014;136(25):8839.

    Article  CAS  Google Scholar 

  21. Zhao X, Bao Z, Sun C, Xue D. Polymorphology formation of Cu2O: a microscopic understanding of single crystal growth from both thermodynamic and kinetic models. J Cryst Growth. 2009;311(3):711.

    Article  CAS  Google Scholar 

  22. Huang X, Zhao Z, Fan J, Tan Y, Zheng N. Amine-assisted synthesis of concave polyhedral platinum nanocrystals having 411 high-index facets. J Am Chem Soc. 2011;133(13):4718.

    Article  CAS  Google Scholar 

  23. Zhang L, Zhang J, Kuang Q, Xie S, Jiang Z, Xie Z, Zheng L. Cu2+-assisted synthesis of hexoctahedral Au–Pd alloy nanocrystals with high-index facets. J Am Chem Soc. 2011;133(43):17114.

    Article  CAS  Google Scholar 

  24. Sun SD, Zhang X, Cui J, Yang Q, Liang S. High-index faceted metal oxide micro-/nanostructures: a review on their characterization, synthesis and applications. Nanoscale. 2019;11:15739.

    Article  CAS  Google Scholar 

  25. Sun SD, Song XP, Sun YX, Deng DC, Yang ZM. The crystal-facet-dependent effect of polyhedral Cu2O microcrystals on photocatalytic activity. Cata Sci Technol. 2012;2(5):925.

    Article  CAS  Google Scholar 

  26. Yang RC, Ma FY, Tao TX, Tang DX, Ren YM, Chen ZM, Zhang X, Xu MD. Zn2+-assisted synthesis of concave Cu2O crystals and enhanced photocatalytic properties. Catal Commun. 2013;42:109.

    Article  CAS  Google Scholar 

  27. Liang SH, Gou XF, Cui J, Luo YG, Qu HT, Zhang T, Yang ZM, Yang Q, Sun SD. Novel cone-like ZnO mesocrystals with co-exposed (1011) and (0001) facets and enhanced photocatalytic activity. Inorg Chim Acta. 2018;5:2257.

    CAS  Google Scholar 

  28. Li P, Chen X, He H, Zhou X, Zhou Y, Zou Z. Polyhedral 30-faceted BiVO4 microcrystals predominantly enclosed by high-index planes promoting photocatalytic water-splitting activity. Adv Mater. 2018;30:1703119.

    Article  CAS  Google Scholar 

  29. Hu JQ, He HC, Li L, Zhou X, Li ZS, Shen Q, Wu CP, Adullah MA, Zhou Y, Zou ZG. Highly symmetrical, 24-faceted, concave BiVO4 polyhedron bounded by multiple high-index facets for prominent photocatalytic O2 evolution under visible light. Chem Commun. 2019;55:4777.

    Article  CAS  Google Scholar 

  30. Xu XL, Zhang X, Sun H, Yang Y, Dai XP, Gao JS, Li XY, Zhang PF, Wang HH, Yu NF, Sun SG. Synthesis of Pt–Ni alloy nanocrystals with high-index facets and enhanced electrocatalytic properties. Angew Chem Int Ed Engl. 2014;126(46):12730.

    Article  Google Scholar 

  31. Kim DH, Lee YW, Lee SB, Han SW. Convex polyhedral Au@Pd core–shell nanocrystals with high-index facets. Angew Chem Int Ed Engl. 2012;51:159.

    Article  CAS  Google Scholar 

  32. Cui XY, Zhang ZC, Gong Y, Saleem F, Chen B, Du YH, Lai ZC, Yang NL, Li B, Gu L, Zhang H. Defect-rich, candied haws-shaped AuPtNi alloy nanostructures for highly efficient electrocatalysis. CCS Chem. 2020;2:24.

    Article  CAS  Google Scholar 

  33. Murphy CJ, Sau TK, Gole AM, Orendorff CJ, Gao JX, Li T. Anisotropic metal nanoparticles: synthesis, assembly, and optical applications. J Phys Chem B. 2005;109(29):13857.

    Article  CAS  Google Scholar 

  34. Wang F, Li CH, Sun LD, Wu HS, Ming T, Wang JF, Yu JC, Yan CH. Heteroepitaxial growth of high-index-faceted palladium nanoshells and their catalytic performance. J Am Chem Soc. 2011;133(4):1106.

    Article  CAS  Google Scholar 

  35. Lu CL, Prasad KS, Hl Wu, Ho JA, Huang MH. Au nanocube-directed fabrication of Au–Pd core-shell nanocrystals with tetrahexahedral, concave octahedral, and octahedral structures and their electrocatalytic activity. J Am Chem Soc. 2010;132(41):14546.

    Article  CAS  Google Scholar 

  36. Sun SD, Zhang H, Song XP, Liang SH, Kong CC, Yang Z. Polyhedron-aggregated multi-facet Cu2O homogeneous structures. CrystEngComm. 2011;13:6040.

    Article  CAS  Google Scholar 

  37. Xiong Y, Chen J, Wiley B, Xia Y. Understanding the role of oxidative etching in the polyol synthesis of Pd nanoparticles with uniform shape and size. J Am Chem Soc. 2005;127(20):7332.

    Article  CAS  Google Scholar 

  38. Wiley BJ, Herricks T, Sun YG, Xia Y. Polyol synthesis of silver nanoparticles: use of chloride and oxygen to promote the formation of single-crystal, truncated cubes and tetrahedrons. Nano Lett. 2004;4(9):1733.

    Article  CAS  Google Scholar 

  39. Xiong Y. Morphological changes in Ag nanocrystals triggered by citrate photoreduction and governed by oxidative etching. ChemComm. 2011;47(5):1580.

    CAS  Google Scholar 

  40. Du H, Luo S, Wang K, Tang M, Sriphathoorat R, Jin Y, Shen PK. High-quality and deeply excavated Pt3Co nanocubes as efficient catalysts for liquid fuel electrooxidation. Chem Mater. 2017;29(22):9613.

    Article  CAS  Google Scholar 

  41. Zheng Yi Q, Zeng J, Ruditskiy A, Liu MC, Xia Y. Oxidative etching and Its role in manipulating the nucleation and growth of noble-metal nanocrystals. Chem Mater. 2014;26(1):22.

    Article  CAS  Google Scholar 

  42. Zhang L, Roling LT, Wang X, Vara M, Chi MF, Liu JY, Choi SI, Park J, Herron JA, Xie ZX, Mavrikakis M, Xia YN. Platinum-based nanocages with subnanometer-thick walls and well-defined, controllable facets. Science. 2015;24(6246):412.

    Article  CAS  Google Scholar 

  43. Zhang H, Jin MS, Wang JG, Li WY, Camargo PHC, Kim MJ, Yang DR, Xie ZX, Xia YN. Synthesis of Pd−Pt bimetallic nanocrystals with a concave structure through a bromide-induced galvanic replacement reaction. J Am Chem Soc. 2011;133(15):6078.

    Article  CAS  Google Scholar 

  44. Zhang H, Xia X, Li W, Zeng J, Dai Y, Yang D, Xia Y. Facile synthesis of five-fold twinned, starfish-like rhodium nanocrystals by eliminating oxidative etching with a chloride-free precursor. Angew Chem. 2010;122(31):5424.

    Article  Google Scholar 

  45. Ma L, Wang C, Gong M, Liao L, Long R, Wang J, Wu D, Zhong W, Kim MJ, Chen Y, Xie Y, Xiong Y. Control over the branched structures of platinum nanocrystals for electrocatalytic applications. ACS Nano. 2012;6(11):9797.

    Article  CAS  Google Scholar 

  46. Wang K, Du HY, Sriphathoorat R, Shen PK. Vertex-type engineering of Pt–Cu–Rh heterogeneous nanocages for highly efficient ethanol electrooxidation. Adv Mater. 2018;30(45):1804074.

    Article  CAS  Google Scholar 

  47. Wang CY, Zhang LH, Yang HZ, Pan JF, Liu JY, Dotse C, Luan YL, Gao R, Lin CK, Zhang J, Kilcrease JP, Wen XD, Zou SZ, Fang JY. High-indexed Pt3Ni alloy tetrahexahedral nanoframes evolved through preferential CO etching. Nano Lett. 2017;14(4):2204.

    Article  CAS  Google Scholar 

  48. Zhang LZ, Shi JW, Liu MC, Jing DW, Guo L. Photocatalytic reforming of glucose under visible light over morphology controlled Cu2O: efficient charge separation by crystal facet engineering. Chem Commun. 2014;50:192.

    Article  CAS  Google Scholar 

  49. Gong W, Jiang Z, Wu R, Liu Y, Huang L, Hu N, Tsiakaras P, Shen PK. Cross-double dumbbell-like Pt–Ni nanostructures with enhanced catalytic performance toward the reactions of oxygen reduction and methanol oxidation. Appl Catal B-Environ. 2019;246:277.

    Article  CAS  Google Scholar 

  50. Wu RF, Tsiakaras P, Shen PK. Facile synthesis of bimetallic Pt–Pd symmetry-broken concave nanocubes and their enhanced activity toward oxygen reduction reaction. Appl Catal B-Environ. 2019;251(15):49.

    Article  CAS  Google Scholar 

  51. Huang L, Zhang XP, Han YJ, Wang QQ, Fang YX, Dong S. High-index facets bounded platinum-lead concave nanocubes with enhanced electrocatalytic properties. Chem Mater. 2017;29(10):4557.

    Article  CAS  Google Scholar 

  52. Luo ZM, Tan CL, Lai ZC, Xiao Z, Chen J. A simple electrochemical method for conversion of Pt wires to Pt concave icosahedra and nanocubes on carbon paper for electrocatalytic hydrogen evolution. Sci China Mater. 2019;62:115.

    Article  CAS  Google Scholar 

  53. Tian N, Zhou ZY, Sun SG, Ding Y, Wang ZL. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science. 2007;316(5825):732.

    Article  CAS  Google Scholar 

  54. Deng YJ, Tian N, Zhou ZY, Huang R, Liu ZL, Xiao J, Sun SG. Alloy tetrahexahedral Pd–Pt catalysts: enhancing significantly the catalytic activity by synergy effect of high-index facets and electronic structure. Chem Sci. 2012;3(4):1157.

    Article  CAS  Google Scholar 

  55. Tian N, Xiao J, Zhou ZY, Liu HX, Deng YJ, Huang L, Xu BB, Sun SG. Pt-group bimetallic nanocrystals with high-index facets as high performance electrocatalysts. Faraday Discuss. 2013;162:77.

    Article  CAS  Google Scholar 

  56. Tian N, Zhou ZY, Yu NF, Wang LY, Sun SG. Direct electrodeposition of tetrahexahedral Pd nanocrystals with high-index facets and high catalytic activity for ethanol electrooxidation. J Am Chem Soc. 2010;132:7580.

    Article  CAS  Google Scholar 

  57. Yu NF, Tian N, Zhou ZY, Huang L, Xiao J, Wen YH, Sun SG. Electrochemical synthesis of tetrahexahedral rhodium nanocrystals with extraordinarily high surface energy and high electrocatalytic activity. Angew Chem Int Ed Engl. 2014;53(20):5097.

    Article  CAS  Google Scholar 

  58. Xiao J, Liu S, Tian N, Zhou ZY, Liu HX, Xu BB, Sun SG. Synthesis of convex hexoctahedral Pt micro/nanocrystals with high-index facets and electrochemistry-mediated shape evolution. J Am Chem Soc. 2013;135(50):18754.

    Article  CAS  Google Scholar 

  59. Li Y, Jiang Y, Chen M, Liao H, Huang R, Zhou ZY, Tian N, Chen SP, Sun SG. Electrochemically shape-controlled synthesis of trapezohedral platinum nanocrystals with high electrocatalytic activity. Chem Commun (Camb). 2012;48(76):9531.

    Article  CAS  Google Scholar 

  60. Wei L, Zhou ZY, Chen SP, Xu CD, Su DS, Schusterc ME, Sun SG. Electrochemically shape-controlled synthesis in deep eutectic solvents: triambic icosahedral platinum nanocrystals with high-index facets and their enhanced catalytic activity. Chem Commun. 2013;49:11152.

    Article  CAS  Google Scholar 

  61. Zhou ZY, Tian N, Huang ZZ, Chen DJ, Sun SG. Nanoparticlecatalysts with high energy surfaces and enhanced activity synthesized by electrochemical method. Faraday Discuss. 2009;140:81.

    Article  Google Scholar 

  62. Liu C, Chang YH, Chen JN, Feng S. Electrochemical synthesis of Cu2O concave octahedrons with high-index facets and enhanced photoelectrochemical activity. ACS Appl Mater Interfaces. 2017;9(44):39027.

    Article  CAS  Google Scholar 

  63. Huang L, Chen PC, Liu M, Fu X, Gordiichuk P, Yu Y, Wolverton C, Kang Y, Mirkin CA. Catalyst design by scanning probe block copolymer lithography. Proc Natl Acad Sci. 2018;115(15):3764.

    Article  CAS  Google Scholar 

  64. Chen PC, Liu X, Hedrick JL, Xie Z, Wang S, Lin QY, Hersam MC, Dravid VP, Mirkin CA. Polyelemental nanoparticle libraries. Science. 2016;352(6293):1565.

    Article  CAS  Google Scholar 

  65. Chen PC, Du JS, Meckes B, Huang L, Xie Z, Hedrick JL, Dravid VP, Mirkin CA. Structural evolution of three component nanoparticles in polymer nanoreactors. J Am Chem Soc. 2017;139(29):9876.

    Article  CAS  Google Scholar 

  66. Huang LL, Liu MH, Lin HX, Xu YB, Wu JS, Dravid VP, Wolverton C, Mirkin CA. Shape regulation of high-index facet nanoparticles by dealloying. Science. 2019;365(6458):1159.

    Article  CAS  Google Scholar 

  67. Huang L, Zheng CY, Shen B, Mirkin CA. High-index-facet metal-alloy nanoparticles as fuel cell electrocatalysts. Adv Mater. 2020;32:2002849.

    Article  CAS  Google Scholar 

  68. Huang L, Lin H, Zheng CY, Kluender EJ, Golnabi R, Shen B, Mirkin CA. Multimetallic high-index faceted heterostructured nanoparticles. J Am Chem Soc. 2020;142(10):4570.

    Article  CAS  Google Scholar 

  69. Kundu P, Nethravathi C, Deshpande PA, Rajamathi M, Madras G, Ravishankar N. Ultrafast microwave-assisted route to surfactant-free ultrafine Pt nanoparticles on graphene: synergistic co-reduction mechanism and high catalytic activity. Chem Mater. 2011;23(11):2772.

    Article  CAS  Google Scholar 

  70. Jia FL, Wang FF, Lin Y, Zhang L. Microwave-induced formation of platinum nanostructured networks with superior electrochemical activity and stability. Chem-A Eur J. 2011;17(51):14603.

    Article  CAS  Google Scholar 

  71. Yang SH, Li SN, Song LH, Lv YP, Duan ZY, Li CS, Praeg RF, Gao DW, Chen GZ. Defect-density control of platinum-based nanoframes with high-index facets for enhanced electrochemical properties. Nano Res. 2019;12:2881.

    Article  CAS  Google Scholar 

  72. Qin C, Fan A, Zhang X, Dai X, Sun H, Ren D, Dong Z, Wang Y, Luan CL, Ye JY. The in situ etching assisted synthesis of Pt–Fe–Mn ternary alloys with high-index facets as efficient catalysts for electro-oxidation reactions. Nanoscale. 2019;11(18):9061.

    Article  CAS  Google Scholar 

  73. Dong Z, Li MX, Zhang WL, Liu YJ, Wang Y, Qin CL, Yu L, Yang JT, Zhang X, Dai XP. Cobalt nanoparticles embedded in N, S co-doped carbon towards oxygen reduction reaction derived by in situ reducing cobalt sulfide. ChemCatChem. 2019;11(24):6039.

    Article  CAS  Google Scholar 

  74. Wang XX, Swihart MT, Wu G. Achievements, challenges and perspectives on cathode catalysts in proton exchange membrane fuel cells for transportation. Nat Catal. 2019;2(7):578.

    Article  CAS  Google Scholar 

  75. Qin Y, Zhang W, Guo K, Liu X, Liu J, Liang X, Wang XP, Gao DW, Gan LY, Zhu YT, Zhang ZC, Hu WP. Fine-tuning intrinsic strain in penta-twinned Pt–Cu–Mn nanoframes boosts oxygen reduction catalysis. Adv Funct Mater. 2020;30(11):1910107.

    Article  CAS  Google Scholar 

  76. Guo SJ, Huang XQ, Zhang Q. Editorial for special issue on metal-based materials for energy catalysis. Rare Met. 2020;39(7):748.

    Article  CAS  Google Scholar 

  77. Gao DW, Li SN, Lv YP, Zhuo HY, Zhao S, Song LH, Yang SH, Yc Q, Li CC, Wei Q, Chen GZ. PtNi colloidal nanoparticle clusters: tuning electronic structure and boundary density of nanocrystal subunits for enhanced electrocatalytic properties. J Catal. 2019;376:87.

    Article  CAS  Google Scholar 

  78. Tian N, Zhou ZY, Sun SG. Platinum metal catalysts of high-index surfaces: from single-crystal planes to electrochemically shape-controlled nanoparticles. J Phy C C. 2008;112(50):19801.

    Article  CAS  Google Scholar 

  79. Zhang JM, Qu XMG, Han Y, Shen LF, Yin SH, Li G, Jiang YX, Sun SG. Engineering PtRu bimetallic nanoparticles with adjustable alloying degree for methanol electrooxidation: enhanced catalytic performance. Appl Catal B-Environ. 2020;263:118345.

    Article  CAS  Google Scholar 

  80. Chen QL, Yang YN, Cao ZM, Kuang Q, Du GF, Jiang YQ, Xie ZX. Excavated cubic platinum-tin alloy nanocrystals constructed from ultrathin nanosheets with enhanced electrocatalytic activity. Angew Chem Int Ed. 2016;55:9021.

    Article  CAS  Google Scholar 

  81. Zhao JY, Wang R, Wang S, Lv YR, Xua H, Zang S. Metal-organic framework-derived Co9S8 embedded in N, O and S-tridoped carbon nanomaterials as an efficient oxygen bifunctional electrocatalyst. J Mater Chem A. 2019;7(13):7389.

    Article  CAS  Google Scholar 

  82. Wang Y, Zhuo H, Sun H, Zhang X, Dai X, Luan C, Qin CL, Zhao HH, Li J, Wang ML. Implanting Mo atoms into surface lattice of Pt3Mn alloys enclosed by high-indexed facets: promoting highly active sites for ethylene glycol oxidation. ACS Catal. 2018;9(1):442.

    Article  CAS  Google Scholar 

  83. Xia ZH, Zhang PR, Feng G, Xia DG, Zhang JJ. Crossed PtCoCu alloy nanocrystals with high-index facets as highly active catalyst for methanol oxidation reaction. Adv Mater Interfaces. 2018;5(13):1800297.

    Article  CAS  Google Scholar 

  84. Zhang ZC, Hui JF, Liu ZC, Zhang X, Zhuang J, Wang X. Glycine-mediated syntheses of Pt concave nanocubes with high-index hk0 facets and their enhanced electrocatalytic activities. Langmuir. 2012;28(42):14845.

    Article  CAS  Google Scholar 

  85. Luo B, Zhao F, Xie Z, Yuan Q, Yang F, Yang XT, Li CZ, Zhou ZY. Polyhedron-assembled ternary PtCuCo nanochains: integrated functions enhance the electrocatalytic performance of methanol oxidation at elevated temperature. ACS Appl Mater Interfaces. 2019;11(35):32282.

    Article  CAS  Google Scholar 

  86. Wang W, Chen X, Zhang X, Ye J, Xue F, Zhen C, Liao XY, Li HQ, Li PT, Liu MC. Quatermetallic Pt-based ultrathin nanowires intensified by Rh enable highly active and robust electrocatalysts for methanol oxidation. Nano Energy. 2020;71:104623.

    Article  CAS  Google Scholar 

  87. Shi YF, Lyu ZH, Zhao M, Chen RH, Nguyen QN, Xia YN. Noble-metal nanocrystals with controlled shapes for catalytic and electrocatalytic applications. Chem Rev. 2020. https://doi.org/10.1021/acs.chemrev.0c00454.

    Article  Google Scholar 

  88. Yu KM, Ning GQ, Yang JT, Wang Y, Zhang X, Qin YC, Luan CL, Yu L, Jiang Y, Luan XB. Restructured PtNi on ultrathin nickel hydroxide for enhanced performance in hydrogen evolution and methanol oxidation. J Catal. 2019;375:267.

    Article  CAS  Google Scholar 

  89. Luan CL, Zhou QX, Wang Y, Xiao Y, Dai XP, Huang XL, Zhang X. A General strategy assisted with dual reductants and dual protecting agents for preparing Pt-based alloys with high-index facets and excellent electrocatalytic performance. Small. 2017;13(46):1702617.

    Article  CAS  Google Scholar 

  90. Yang L, Li G, Chang J, Ge J, Liu C, Vladimir F, Wang GL, Jin Z, Xing W. Sea urchin-like Au core@Pd shell electrocatalysts with high FAOR performance: coefficient of lattice strain and electrochemical surface area. Appl Catal B-Environ. 2020;260:118200.

    Article  CAS  Google Scholar 

  91. Poerwoprajitno AR, Gloag L, Cheong S, Gooding JJ, Tilley RD. Synthesis of low- and high-index faceted metal (Pt, Pd, Ru, Ir, Rh) nanoparticles for improved activity and stability in electrocatalysis. Nanoscale. 2019;11(41):18995.

    Article  CAS  Google Scholar 

  92. Yu NF, Tian N, Zhou ZY, Sheng T, Lin WF, Ye JY, Liu S, Ma HB, Sun SG. Pd nanocrystals with continuously tunable high-index facets as a model nanocatalyst. ACS Catal. 2019;9(4):3144.

    Article  CAS  Google Scholar 

  93. Wang Y, Zou S, Cai W-B. Recent advances on electro-oxidation of ethanol on Pt- and Pd-based catalysts: from reaction mechanisms to catalytic materials. Catalysts. 2015;5(3):1507.

    Article  CAS  Google Scholar 

  94. Zhang L, Chen D, Jiang Z, Zhang J, Xie S, Kuang Q, Xie ZX, Zheng LS. Facile syntheses and enhanced electrocatalytic activities of Pt nanocrystals with hkk high-index surfaces. Nano Res. 2012;5(3):181.

    Article  CAS  Google Scholar 

  95. Liu S, Tian N, Xie AY, Du JH, Xiao J, Liu L, Sun HY, Cheng ZY, Zhou ZY, Sun SG. Electrochemically seed-mediated synthesis of Sub-10 nm tetrahexahedral Pt nanocrystals supported on graphene with improved catalytic performance. J Am Chem Soc. 2016;138(18):5753.

    Article  CAS  Google Scholar 

  96. Du H, Wang K, Tsiakaras P, Shen PK. Excavated and dendritic Pt–Co nanocubes as efficient ethylene glycol and glycerol oxidation electrocatalysts. Appl Catal B-Environ. 2019;258:117951.

    Article  CAS  Google Scholar 

  97. Wang Y, Qin YC, Zhang X, Dai XP, Zhuo HY, Luan CL, Jiang Y, Zhao HH, Wang H, Huang XL. Promoting effect of nickel hydroxide on the electrocatalytic performance of Pt in alkaline solution. Dalton Trans. 2018;47(24):7975.

    Article  CAS  Google Scholar 

  98. Xiang S, Wang L, Huang CC, Fan YJ, Tang HG, Wei L, Sun SG. Concave cubic PtLa alloy nanocrystals with high-index facets: controllable synthesis in deep eutectic solvents and their superior electrocatalytic properties for ethanol oxidation. J Power Sources. 2018;399:422.

    Article  CAS  Google Scholar 

  99. Wagner FT, Lakshmanan B, Mathias MF. Electrochemistry and the future of the automobile. J Phys Chem Lett. 2010;1(14):2204.

    Article  CAS  Google Scholar 

  100. Gasteiger HA, Kocha SS, Sompalli B, Wagner FT. Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl Catal B-Environ. 2005;56(1–2):9.

    Article  CAS  Google Scholar 

  101. Peng Z, Yang H. Designer platinum nanoparticles: control of shape, composition in alloy, nanostructure and electrocatalytic property. Nano Today. 2009;4(2):143.

    Article  CAS  Google Scholar 

  102. Nørskov JK, Bligaard T, Rossmeisl J, Christensen CH. Towards the computational design of solid catalysts. Nat Chem. 2009;1:37.

    Article  CAS  Google Scholar 

  103. Debe MK. Electrocatalyst approaches and challenges for automotive fuel cells. Nature. 2012;486(7401):43.

    Article  CAS  Google Scholar 

  104. Yu W, Porosoff MD, Chen JG. Review of Pt-based bimetallic catalysis: from model surfaces to supported catalysts. Chem Rev. 2012;112(11):5780.

    Article  CAS  Google Scholar 

  105. Chen J, Lim B, Lee EP, Xia Y. Shape-controlled synthesis of platinum nanocrystals for catalytic and electrocatalytic applications. Nano Today. 2009;4(1):81.

    Article  CAS  Google Scholar 

  106. Stamenkovic RV, Fowler B, Mun BS, Wang GF, Ross PN. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science. 2007;315:493.

    Article  CAS  Google Scholar 

  107. Stamenkovic V, Mun BS, Mayrhofer KJ, Ross PN, Markovic NM, Rossmeisl J, Greeley J, Norskov JK. Changing the activity of electrocatalysts for oxygen reduction by tuning the surface electronic structure. Angew Chem Int Ed Engl. 2006;45(18):2897.

    Article  CAS  Google Scholar 

  108. Wang YJ, Long W, Wang L, Yuan R, Ignaszak A, Fang B, Wilkinson DP. Unlocking the door to highly active ORR catalysts for PEMFC applications: polyhedron-engineered Pt-based nanocrystals. Energy Environ Sci. 2018;11(2):258.

    Article  CAS  Google Scholar 

  109. Chen Q, Cao Z, Du G, Kuang Q, Huang J, Xie ZX, Zheng LS. Excavated octahedral Pt–Co alloy nanocrystals built with ultrathin nanosheets as superior multifunctional electrocatalysts for energy conversion applications. Nano Energy. 2017;39:582.

    Article  CAS  Google Scholar 

  110. Luo MC, Sun YJ, Zhang X, Qin YN, Li MQ, Li YJ, Li CJ, Yang Y, Wang L, Gao P, Lu G, Guo SJ. Stable high-index faceted Pt skin on zigzag-like PtFe nanowires enhances oxygen reduction catalysis. Adv Mater. 2018;30(10):1705515.

    Article  CAS  Google Scholar 

  111. Tian XL, Zhao X, Su YQ, Wang LJ, Wang HM, Dang D, Chi B, Liu HF, Hensen Emiel JM, Lou XW, Xia BY. Engineering bunched Pt–Ni alloy nanocages for efficient oxygen reduction in practical fuel cells. Science. 2019;366:850.

    Article  CAS  Google Scholar 

  112. Liu Y, Liu S, Che Z, Zhao S, Sheng X, Han M, Bao JC. Concave octahedral Pd@PdPt electrocatalysts integrating core–shell, alloy and concave structures for high-efficiency oxygen reduction and hydrogen evolution reactions. J Mater Chem A. 2016;4(42):16690.

    Article  CAS  Google Scholar 

  113. Xu GR, Bai J, Yao L, Xue Q, Jiang JX, Zeng JH, Chen Y, Lee JM. Polyallylamine-functionalized platinum tripods: enhancement of hydrogen evolution reaction by proton carriers. ACS Catal. 2016;7(1):452.

    Article  CAS  Google Scholar 

  114. Wang Y, Zhuo HY, Zhang X, Dai XP, Yu KM, Luan CL, Yu L, Xiao Y, Li J, Wang ML, Gao F. Synergistic effect between undercoordinated platinum atoms and defective nickel hydroxide on enhanced hydrogen evolution reaction in alkaline solution. Nano Energy. 2018;48:590.

    Article  CAS  Google Scholar 

  115. Wakisaka T, Kusada K, Wu DS, Yamamoto T, Toriyama T, Matsumura S, Kitagawa H. Catalytic activity of Rh nanoparticles with high-index faces for hydrogen evolution reaction in alkaline solution. Chem Lett. 2020;49(2):207.

    Article  CAS  Google Scholar 

  116. Feng LL, Yu G, Wu Y, Li GD, Li H, Sun YH, Asefa T, Chen W, Zou XX. High-index faceted Ni3S2 nanosheet arrays as highly active and ultrastable electrocatalysts for water splitting. J Am Chem Soc. 2015;137(44):14023.

    Article  CAS  Google Scholar 

  117. Deng S, Zhang K, Xie D, Zhang Y, Zhang Y, Wang Y, Wu JB, Wang XL, Fan HJ, Xia XH, Tu JP. High-index-faceted Ni3S2 branch arrays as bifunctional electrocatalysts for efficient water splitting. Micro Nano Lett. 2019;11(1):1705796.

    Google Scholar 

  118. Zhang C, Huang Y, Yu Y, Zhang J, Zhuo S, Zhang B. Sub-1.1 nm ultrathin porous CoP nanosheets with dominant reactive 200 facets: a high mass activity and efficient electrocatalyst for the hydrogen evolution reaction. Chem Sci. 2017;8(4):2769.

    Article  CAS  Google Scholar 

  119. Li H, Li Q, Wen P, Williams TB, Adhikari S, Dun C, Lu C, Itanze D, Jiang L, Carroll DL, Donati GL, Lundin PM, Qiu YJ, Geyer SM. Colloidal cobalt phosphide nanocrystals as trifunctional electrocatalysts for overall water splitting powered by a zinc-air battery. Adv Mater. 2018;30(9):1705796.

    Article  CAS  Google Scholar 

  120. Shen M, Han A, Wang X, Ro YG, Kargar A, Lin Y, Guo H, Du PW, Jiang J, Zhang JY. Atomic scale analysis of the enhanced electro- and photo-catalytic activity in high-index faceted porous NiO nanowires. Sci Rep. 2015;5:8557.

    Article  CAS  Google Scholar 

  121. Li XX, Zhu PY, Li Q, Xu YX, Zhao Y, Pang H. Nitrogen-, phosphorus-doped carbon–carbon nanotube CoP dodecahedra by controlling zinc content for high-performance electrocatalytic oxygen evolution. Rare Met. 2020;39(6):680.

    Article  CAS  Google Scholar 

  122. Ma JZ, Zhang JT. Surface coating of electrocatalysts boosts battery performance. Rare Met. 2020;39(6):613.

    Article  CAS  Google Scholar 

  123. Zou W, Dou K, Jiang Q, Xiang J, Kaun CC, Tang H. Nearly spherical CoP nanoparticle/carbon nanosheet hybrids: a high-performance trifunctional electrocatalyst for oxygen reduction and water splitting. RSC Adv. 2019;9(68):39951.

    Article  CAS  Google Scholar 

  124. Kou Z, Xi K, Pu Z, Mu S. Constructing carbon-cohered high-index (222) faceted tantalum carbide nanocrystals as a robust hydrogen evolution catalyst. Nano Energy. 2017;36:374.

    Article  CAS  Google Scholar 

  125. Li Y, Wang Y, Pattengale B, Yin J, An L, Cheng F, Li YF, Huang JE, Xi PX. High-index faceted CuFeS2 nanosheets with enhanced behavior for boosting hydrogen evolution reaction. Nanoscale. 2017;9(26):9230.

    Article  CAS  Google Scholar 

  126. Liu YJ, Luan CL, Yang JT, Dong Y, Wang Y, Qin CL, Dong Z, Wang SQ, Dai XP, Zhang X. In situ fabrication of dynamic self-optimizing Ni3S2 nanosheets as an efficient catalyst for the oxygen evolution reaction. Dalton Trans. 2020;49(1):70.

    Article  CAS  Google Scholar 

  127. Stoerzinger KA, Diaz-Morales O, Kolb M. Orientation-dependent oxygen evolution on RuO2 without lattice exchange. ACS Energy Lett. 2017;4:876.

    Article  CAS  Google Scholar 

  128. Takashima T, Hemmi S, Liu QY, Irie H. Facet-dependent activity of hematite nanocrystals toward the oxygen evolution reaction. Catal Sci Technol. 2020;10:3748.

    Article  CAS  Google Scholar 

  129. Wang W, Zhang YJ, Huang XJ, Bi YP. Engineering the surface atomic structure of FeVO4 nanocrystals for use as highly active and stable electrocatalysts for oxygen evolution. J Mater Chem A. 2019;7:10949.

    Article  CAS  Google Scholar 

  130. Wang Y, Hu TJ, Chen Y, Yuan HJ, Qiao YT. Crystal facet-dependent activity of a-Mn2O3 for oxygen reduction and oxygen evolution reactions. Int J Hydrogen Energy. 2020;45:22744.

    Article  CAS  Google Scholar 

  131. Buvat G, Eslamibidgoli MJ, Garbarino S, Eikerling M, Guay D. OER performances of cationic substituted (100)-oriented IrO2 thin films: a joint experimental and theoretical study. ACS Appl Energy Mater. 2020;3(6):5229.

    Article  CAS  Google Scholar 

  132. Ma C, Sun W, Qamar Zaman W, Zhou Z, Zhang H, Shen Q, Cao LM, Yang J. Lanthanides regulated the amorphization-crystallization of IrO2 for outstanding OER performance. ACS Appl Mater Interfaces. 2020;12(31):34980.

    Article  CAS  Google Scholar 

  133. Marje SJ, Katkar PK, Kale SB, Lokhande AC, Lokhande CD, Patil UM. Effect of phosphate variation on morphology and electrocatalytic activity (OER) of hydrous nickel pyrophosphate thin films. J Alloys Compd. 2019;779:49.

    Article  CAS  Google Scholar 

  134. Stein HS, Guevarra D, Shinde A, Jones RJR, Gregoire JM, Haber JA. Functional mapping reveals mechanistic clusters for OER catalysis across (Cu–Mn–Ta–Co–Sn–Fe)Ox composition and pH space. Mater Horizons. 2019;6(6):1251.

    Article  CAS  Google Scholar 

  135. Zhang C, Zheng F, Zhang Z, Xiang D, Cheng C, Zhuang Z, Li P, Li XK, Chen W. Fabrication of hollow pompon-like Co3O4 nanostructures with rich defects and high-index facet exposure for enhanced oxygen evolution catalysis. J Mater Chem A. 2019;7(15):9059.

    Article  CAS  Google Scholar 

  136. Liu L, Jiang Z, Fang L, Xu H, Zhang H, Gu X, Wang Y. Probing the crystal plane effect of Co3O4 for enhanced electrocatalytic performance toward efficient overall water splitting. ACS Appl Mater Interfaces. 2017;9(33):27736.

    Article  CAS  Google Scholar 

  137. Wei R, Fang M, Dong G, Lan C, Shu L, Zhang H, Bu XM, Ho JC. High-index faceted porous Co3O4 nanosheets with oxygen vacancies for highly efficient water oxidation. ACS Appl Mater Interfaces. 2018;10(8):7079.

    Article  CAS  Google Scholar 

  138. Chemler SR, Bovino MT. Catalytic aminohalogenation of alkenes and alkynes. ACS Catal. 2013;3(6):1076.

    Article  CAS  Google Scholar 

  139. Yang H, Luo S, Li X, Li S, Jin J, Ma J. Controllable orientation-dependent crystal growth of high-index faceted dendritic NiC0.2 nanosheets as high-performance bifunctional electrocatalysts for overall water splitting. J Mater Chem A. 2016;4(47):18499.

    Article  CAS  Google Scholar 

  140. Ma TY, Dai S, Jaroniec M, Qiao SZ. Metal-organic framework derived hybrid Co3O4-carbon porous nanowire arrays as reversible oxygen evolution electrodes. J Am Chem Soc. 2014;136(39):13925.

    Article  CAS  Google Scholar 

  141. McCrory CC, Jung S, Peters JC, Jaramillo TF. Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J Am Chem Soc. 2013;135(45):16977.

    Article  CAS  Google Scholar 

  142. Puangsombut P, Tantavichet N. Effect of plating bath composition on chemical composition and oxygen reduction reaction activity of electrodeposited Pt–Co catalysts. Rare Met. 2019;38(2):95.

    Article  CAS  Google Scholar 

  143. Wang HH, Zhang JF, Chen ZL, Zhang MM, Han XP, Zhong C, Deng YD, Hu WB. Size-controllable synthesis and high-performance formic acid oxidation of polycrystalline Pd nanoparticles. Rare Met. 2019;38(2):115.

    Article  CAS  Google Scholar 

  144. Jin M, Zhang H, Xie Z, Xia Y. Palladium concave nanocubes with high-index facets and their enhanced catalytic properties. Angew Chem Int Ed Engl. 2011;50(34):7850.

    Article  CAS  Google Scholar 

  145. Zhang J, Zhang L, Xie S, Kuang Q, Han X, Xie Z, Zheng LS. Synthesis of concave palladium nanocubes with high-index surfaces and high electrocatalytic activities. Chemistry. 2011;17(36):9915.

    Article  CAS  Google Scholar 

  146. Hong JW, Kim D, Lee YW, Kim M, Kang SW, Han SW. Atomic-distribution-dependent electrocatalytic activity of Au–Pd bimetallic nanocrystals. Angew Chem Int Ed Engl. 2011;50(38):8876.

    Article  CAS  Google Scholar 

  147. Zhan F, Bian T, Zhao W, Zhang H, Jin M, Yang D. Facile synthesis of Pd–Pt alloy concave nanocubes with high-index facets as electrocatalysts for methanol oxidation. CrystEngComm. 2014;16(12):2411.

    Article  CAS  Google Scholar 

  148. Qi Y, Bian T, Choi SI, Jiang Y, Jin C, Fu M, Zhang H, Yang DR. Kinetically controlled synthesis of Pt–Cu alloy concave nanocubes with high-index facets for methanol electro-oxidation. Chem Commun (Camb). 2014;50(5):560.

    Article  CAS  Google Scholar 

  149. Wan XX, Zhang DF, Guo L. Concave PtCu nanocuboctahedrons with high-index facets and improved electrocatalytic performance. CrystEngComm. 2016;18(18):3216.

    Article  CAS  Google Scholar 

  150. Chen Q, Zhang J, Jia Y, Jiang Z, Xie Z, Zheng L. Wet chemical synthesis of intermetallic Pt3Zn nanocrystals via weak reduction reaction together with UPD process and their excellent electrocatalytic performances. Nanoscale. 2014;6(12):7019.

    Article  CAS  Google Scholar 

  151. Yin AX, Min XQ, Zhu W, Liu WC, Zhang YW, Yan CH. Pt–Cu and Pt–Pd–Cu concave nanocubes with high-index facets and superior electrocatalytic activity. Chemistry. 2012;18(3):777.

    Article  CAS  Google Scholar 

  152. Zhang P, Dai X, Zhang X, Chen Z, Yang Y, Sun H, Wang XB, Wang H, Wang ML, Su HX, Li D, Li XS, Qin YC. One-pot synthesis of ternary Pt–Ni–Cu nanocrystals with high catalytic performance. Chem Mater. 2015;27(18):6402.

    Article  CAS  Google Scholar 

  153. Yang J, Ning G, Yu L, Wang Y, Luan C, Fan A, Zhang X, Liu YJ, Dong Y, Dai XP. Morphology controllable synthesis of PtNi concave nanocubes enclosed by high-index facets supported on porous graphene for enhanced hydrogen evolution reaction. J Mater Chem A. 2019;7(30):17790.

    Article  CAS  Google Scholar 

  154. Zhou ZY, Huang ZZ, Chen DJ, Wang Q, Tian N, Sun SG. High-index faceted platinum nanocrystals supported on carbon black as highly efficient catalysts for ethanol electrooxidation. Angew Chem Int Ed Engl. 2010;49(2):411.

    Article  CAS  Google Scholar 

  155. Qin Y, Zhang X, Dai X, Sun H, Yang Y, Li X, Shi QX, Gao DW, Wang H, Yu NF, Sun SG. Graphene oxide-assisted synthesis of Pt–Co alloy nanocrystals with high-index facets and enhanced electrocatalytic properties. Small. 2016;12(4):524.

    Article  CAS  Google Scholar 

  156. Kang Y, Snyder J, Chi M, Li D, More KL, Markovic NM, Stamenkovic VR. Multimetallic core/interlayer/shell nanostructures as advanced electrocatalysts. Nano Lett. 2014;14(11):6361.

    Article  CAS  Google Scholar 

  157. Dionigi F, Weber CC, Primbs M, Gocyla M, Bonastre AM, Spori C, Schmies H, Hornberger E, Kuhl S, Drnec J, Heggen M, Sharman J, Dunin-Borkowski RE, Strasser P. Controlling near-surface Ni composition in octahedral PtNi(Mo) nanoparticles by Mo doping for a highly active oxygen reduction reaction catalyst. Nano Lett. 2019;19(10):6876.

    Article  CAS  Google Scholar 

  158. Wang Y, Zheng M, Sun H, Zhang X, Luan C, Li Y, Zhao L, Zhao HH, Dai XP, Ye JY, Wang H, Sun SG. Catalytic Ru containing Pt3Mn nanocrystals enclosed with high-indexed facets: surface alloyed Ru makes Pt more active than Ru particles for ethylene glycol oxidation. Appl Catal B-Environ. 2019;253:11.

    Article  CAS  Google Scholar 

  159. Kwon H, Kabiraz MK, Park J, Oh A, Baik H, Choi SI, Lee K. Dendrite-embedded platinum-nickel multiframes as highly active and durable electrocatalyst toward the oxygen reduction reaction. Nano Lett. 2018;18(5):2930.

    Article  CAS  Google Scholar 

  160. Li GG, Lin Y, Wang H. Residual silver remarkably enhances electrocatalytic activity and durability of dealloyed gold nanosponge particles. Nano Lett. 2016;16(11):7248.

    Article  CAS  Google Scholar 

  161. Xu H, Wei J, Zhang M, Wang C, Shiraishi Y, Guo J, Du YK. Solvent-mediated length tuning of ultrathin platinum–cobalt nanowires for efficient electrocatalysis. J Mater Chem A. 2018;6(47):24418.

    Article  CAS  Google Scholar 

  162. Jiang K, Shao Q, Zhao D, Bu L, Guo J, Huang X. Phase and composition tuning of 1D platinum-nickel nanostructures for highly efficient electrocatalysis. Adv Funct Mater. 2017;27(28):1700830.

    Article  CAS  Google Scholar 

  163. Bu L, Guo S, Zhang X, Shen X, Su D, Lu G, Zhu X, Yao JL, Guo J, Huang XQ. Surface engineering of hierarchical platinum-cobalt nanowires for efficient electrocatalysis. Nat Commun. 2016;7:11850.

    Article  CAS  Google Scholar 

  164. Zhang N, Feng Y, Zhu X, Guo S, Guo J, Huang X. Superior bifunctional liquid fuel oxidation and oxygen reduction electrocatalysis enabled by PtNiPd core-shell nanowires. Adv Mater. 2017;29(7):1603774.

    Article  CAS  Google Scholar 

  165. Mao JJ, Chen WX, He DS, Wan JW, Pei JJ, Dong JC, Wang Y, An PF, Jin Z, Xing W. Design of ultrathin Pt–Mo–Ni nanowire catalysts for ethanol electrooxidation. Sci Adv. 2017;3:1603068.

    Article  CAS  Google Scholar 

  166. Shi Q, Zhu C, Bi C, Xia H, Engelhard MH, Du D. Lin YH Intermetallic Pd3Pb nanowire networks boost ethanol oxidation and oxygen reduction reactions with significantly improved methanol tolerance. J Mater Chem A. 2017;5(45):23952.

    Article  CAS  Google Scholar 

  167. Tang JX, Chen QS, You LX, Liao HG, Sun SG, Zhou SG, Xu ZN, Chen YM, Guo GC. Screw-like PdPt nanowires as highly efficient electrocatalysts for methanol and ethylene glycol oxidation. J Mater Chem A. 2018;6(5):2327.

    Article  CAS  Google Scholar 

  168. Chang J, Song L, Xu Y, Ma Y, Liang C, Jiang W, Zhang Y. Fishbone-like platinum-nickel nanowires as an efficient electrocatalyst for methanol oxidation. Nano Res. 2019;13(1):67.

    Article  CAS  Google Scholar 

  169. Huang L, Wei M, Hu N, Tsiakaras P, Kang SP. Molybdenum-modified and vertex-reinforced quaternary hexapod nano-skeletons as efficient electrocatalysts for methanol oxidation and oxygen reduction reaction. Appl Catal B-Environ. 2019;258:117974.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 22008135) and the China Postdoctoral Science Foundation (No. 2020M670345).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yao Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, YR., Li, MX., Li, SN. et al. A review of energy and environment electrocatalysis based on high-index faceted nanocrystals. Rare Met. 40, 3406–3441 (2021). https://doi.org/10.1007/s12598-021-01747-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-021-01747-8

Keywords

Navigation