Skip to main content
Log in

Designing electrolytes for lithium metal batteries with rational interface stability

  • Highlight
  • Published:
Rare Metals Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Reproduced with permission from Ref. [8]. Copyright 2020, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

Fig. 2

Reproduced with permission from Ref. [9]. Copyright 2020, Springer Nature Group

References

  1. Xu BL, Qi SH, Jin MM, Cai XY, Lai LF, Sun ZT, Han XG, Lin ZF, Shao H, Peng P, Xiang ZH, Elshof JE, Tan R, Liu C, Zhang ZX, Duan XC, Ma JM. 2020 roadmap on two-dimensional materials for energy storage and conversion. Chin Chem Lett. 2019;30(12):2053.

    Article  CAS  Google Scholar 

  2. Xia C, Kwok CY, Nazar LF. A high-energy-density lithium-oxygen battery based on a reversible four-electron conversion to lithium oxide. Science. 2018;361(6404):777.

    Article  CAS  Google Scholar 

  3. Qi SH, Wang HP, He J, Liu JD, Cui CY, Wu MG, Li F, Feng YZ, Ma JM. Electrolytes enriched by potassium perfluorinated sulfonates for lithium metal batteries. Sci Bull. 2020. https://doi.org/10.1016/j.scib.2020.09.018.

    Article  Google Scholar 

  4. Li T, Liu H, Shi P, Zhang Q. Recent progress in carbon/lithium metal composite anode for safe lithium metal batteries. Rare Met. 2018;37(6):449.

    Article  CAS  Google Scholar 

  5. Wang HP, He J, Liu JD, Qi SH, Wu MG, Wen J, Chen YN, Feng YZ, Ma JM. Electrolytes enriched by crown ethers for lithium metal batteries. Adv Funct Mater. 2020. https://doi.org/10.1002/adfm.202002578.

    Article  Google Scholar 

  6. Lin D, Liu Y, Cui Y. Reviving the lithium metal anode for high-energy batteries. Nat Nanotechnol. 2017;12(3):194.

    Article  CAS  Google Scholar 

  7. Li YZ, Li YB, Pei AL, Yan K, Sun YM, Wu CL, Joubert LM, Chin R, Koh AL, Yu Y, Perrino J, Butz B, Chu S, Cui Y. Atomic structure of sensitive battery materials and interfaces revealed by cryo-electron microscopy. Science. 2017;358(6362):506.

    Article  CAS  Google Scholar 

  8. Fu J, Ji X, Chen J, Chen L, Fan X, Mu D, Wang C. Lithium nitrate regulated sulfone electrolytes for lithium metal batteries. Angew Chem Ed. 2020. https://doi.org/10.1002/anie.202009575.

    Article  Google Scholar 

  9. Wang Q, Yao Z, Zhao C, Verhallen T, Tabor DP, Liu M, Ooms F, Kang F, Aspuru-Guzik A, Hu YS, Wagemaker M, Li B. Interface chemistry of an amide electrolyte for highly reversible lithium metal batteries. Nat Commun. 2020;11(1):4188.

    Article  Google Scholar 

  10. Fan XL, Chen L, Borodin O, Ji X, Chen J, Hou S, Deng T, Zheng J, Yang CY, Liou SC, Amine K, Xu K, Wang CS. Non-flammable electrolyte enables Li-metal batteries with aggressive cathode chemistries. Nat Nanotechnol. 2018;13(12):1191.

    Article  CAS  Google Scholar 

  11. Li W, Yao H, Yan K, Zheng G, Liang Z, Chiang Y-M, Cui Y. The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth. Nat Commun. 2015;6:7436.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Jun Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, CX., Jiang, JJ. Designing electrolytes for lithium metal batteries with rational interface stability. Rare Met. 40, 243–245 (2021). https://doi.org/10.1007/s12598-020-01629-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-020-01629-5

Navigation