Skip to main content
Log in

Sulfur dioxide gas sensing at room temperature based on tin selenium/tin dioxide hybrid prepared via hydrothermal and surface oxidation treatment

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

In this paper, a novel SnSe/SnO2 nanoparticles (NPs) composite has been successfully fabricated through hydrothermal method and surface oxidation treatment. The as-prepared sample was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). A series of morphological and structural characteristics confirm that the SnSe/SnO2 NPs composite shows a core–shell structure with a SnO2 shell with thickness of 6 nm. The prepared SnO2 NPs and SnSe/SnO2 NPs composite were applied as gas-sensing materials, and their gas-sensing properties were investigated at room temperature systematically. Experimental results show that the response value of the SnSe/SnO2 composite sensor toward 100 × 10–6 SO2 is 15.15%, which is 1.32 times higher than that of pristine SnSe (11.43%). And the SnSe/SnO2 composite sensor also has a detection limit as low as 74 × 10–9 and an ultra-fast response speed. The enhanced gas-sensing performance is attributed to the formation of p–n heterojunction between SnSe and SnO2 and the appropriate SnO2 shell thickness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Das S, Rana S, Mursalin SM, Rana P, Sen A. Sonochemically prepared nanosized BiFeO3 as novel SO2 sensor. Sens Actuators B. 2015;218:122.

    CAS  Google Scholar 

  2. Jung G, Jeong Y, Hong Y, Wu ML, Hong S, Shin W, Park J, Jang D, Lee JH. SO2 gas sensing characteristics of FET- and resistor-type gas sensors having WO3 as sensing material. Solid-State Electron. 2015;165:107747.

    Google Scholar 

  3. Ma C, Hao XD, Yang X, Liang XS, Liu FM, Liu T, Yang CH, Zhu HQ, Lu GY. Sub-ppb SO2 gas sensor based on NASICON and LaxSm1-xFeO3 sensing electrode. Sens Actuators B. 2018;256:648.

    CAS  Google Scholar 

  4. Liu LY, Liu ST. Oxygen vacancies as an efficient strategy for promotion of low concentration SO2 gas sensing: the case of Au-modified SnO2. ACS Sustain Chem Eng. 2018;6(10):13427.

    CAS  Google Scholar 

  5. Liu FM, Wang J, Jiang L, You R, Wang QJ, Wang CL, Lin ZT, Yang ZJ, He JM, Liu A, Sun P, Yan X, Lu GY. Compact and planar type rapid response ppb-level SO2 sensor based on stabilized zirconia and SrMoO4 sensing electrode. Sens Actuators B. 2020;307:127655.

    Google Scholar 

  6. Tong PV, Hoa ND, Nha HT, Duy NV, Hung CM, Hieu NV. SO2 and H2S sensing properties of hydrothermally synthesized CuO nanoplates. J Electron Mater. 2018;47(12):7170.

    Google Scholar 

  7. Ma XH, Qin QX, Zhang N, Chen C, Liu X, Chen Y, Li CN, Ruan SP. Synthesis of SnO2 nano-dodecahedrons with high-energy facets and their sensing properties to SO2 at low temperature. J Alloys Compd. 2017;723:595.

    CAS  Google Scholar 

  8. Nisar J, Topalian Z, De Sarkar A, Osterlund L, Ahuja R. TiO2-based gas sensor: a possible application to SO2. ACS Appl Mater Interfaces. 2013;5(17):8516.

    CAS  Google Scholar 

  9. Zhang DZ, Wu D, Zong XQ, Yang ZM. Enhanced SO2 gas sensing properties of metal organic frameworks-derived titanium dioxide/reduced graphene oxide nanostructure. J Mater Sci Mater Electron. 2019; 30(12):11070.

  10. Wang JX, Zhou Q, Zeng W. Competitive adsorption of SF6 decompositions on Ni-doped ZnO (100) surface: computational and experimental study. Appl Surf Sci. 2019;479:185.

    CAS  Google Scholar 

  11. Zhou Q, Zeng W, Chen WG, Xu LN, Kumar R, Umar A. High sensitive and low-concentration sulfur dioxide (SO2) gas sensor application of heterostructure NiO-ZnO nanodisks. Sens Actuators B. 2019;298:126870.

    CAS  Google Scholar 

  12. Zhang DZ, Yang ZM, Wu ZL, Dong GK. Metal-organic frameworks-derived hollow zinc oxide/cobalt oxide nanoheterostructure for highly sensitive acetone sensing. Sens Actuators B. 2019;283:42.

    CAS  Google Scholar 

  13. Qin Z, Ma ZH, Zhi JK, Fu YL. A facile synthesis of magnetite single-crystal particles by employing GO sheets as template for promising application in magnetic fluid. Rare Met. 2019;38(8):764.

    CAS  Google Scholar 

  14. Ji JH, Xiao YF, Shen B, Yi QY, Zhang JL. Magnetic separation of metal sulfides/oxides by Fe3O4 at room temperature and atmospheric pressure. Rare Met. 2019;38(5):379.

    CAS  Google Scholar 

  15. Si KP, Meng LJ, Gong YJ. Fabrication methods and properties of two-dimensional group VB transition metal dichalcogenides. Chin J Rare Metals. 2019;43(11):1164.

    Google Scholar 

  16. Yang Q, Meng RS, Jiang JK, Liang QH, Tan CJ, Cai M, Sun X, Yang DG, Ren TL, Chen XP. First-principles study of sulfur dioxide sensor based on phosphorenes. IEEE Electron Device Lett. 2016;37(5):660.

    CAS  Google Scholar 

  17. Yang AJ, Wang DW, Wang XH, Zhang DZ, Koratkar N, Rong MZ. Recent advances in phosphorene as a sensing material. Nano Today. 2018;20:13.

    CAS  Google Scholar 

  18. Gomes LC, Carvalho A. Phosphorene analogues: Isoelectronic two-dimensional group-IV monochalcogenides with orthorhombic structure. Phys Rev B. 2015;92(8):085406.

    Google Scholar 

  19. Shafique A, Shin YH. Thermoelectric and phonon transport properties of two-dimensional IV–VI compounds. Sci Rep. 2017;7:506.

    Google Scholar 

  20. Wang J, Yang GF, Xue JJ, Lei JM, Chen DJ, Lu H, Zhang R, Zheng YD. A reusable and high sensitivity nitrogen dioxide sensor based on monolayer SnSe. IEEE Electron Device Lett. 2018;39(4):599.

    CAS  Google Scholar 

  21. Ye HY, Liu L, Xu YX, Wang LY, Chen XP, Zhang K, Liu YF, Koh SW, Zhang GQ. SnSe monolayer: a promising candidate of SO2 sensor with high adsorption quantity. Appl Surf Sci. 2019;484:33.

    CAS  Google Scholar 

  22. Yang ZM, Zhang DZ, Wang DY. Carbon monoxide gas sensing properties of metal-organic frameworks-derived tin dioxide nanoparticles/molybdenum diselenide nanoflowers. Sens Actuators B. 2020;304:127369.

    CAS  Google Scholar 

  23. Li Z, Sun L, Liu Y, Zhu L, Yu DF, Wang YL, Sun Y, Yu M. SnSe@SnO2 core–shell nanocomposite for synchronous photothermal–photocatalytic production of clean water. Environ Sci-Nano. 2019;6(5):1507.

    CAS  Google Scholar 

  24. Wang JJ, Lv AF, Wang YQ, Cui B, Yan HJ, Hu JS, Hu WP, Guo YG, Wan LJ. Integrated prototype nanodevices via SnO2 nanoparticles decorated SnSe nanosheets. Sci. Rep. 2013;3:2613.

    Google Scholar 

  25. Lu C, Li ZZ, Xia Z, Ci HN, Cai JS, Song YZ, Yu LH, Yin WJ, Dou SX, Sun JY, Liu ZF. Confining MOF-derived SnSe nanoplatelets in nitrogen-doped graphene cages via direct CVD for durable sodium ion storage. Nano Res. 2019;12(12):3051.

    CAS  Google Scholar 

  26. Chen PF, Dai XQ, Xing PX, Zhao XY, Zhang QL, Ge SF, Si JX, Zhao LH, He YM. Microwave heating assisted synthesis of novel SnSe/g-C3N4 composites for effective photocatalytic H2 production. J Ind Eng Chem. 2019;80:74.

    CAS  Google Scholar 

  27. Liu D, Pan JL, Tang JH, Liu WQ, Bai SL, Luo RX. Ag decorated SnO2 nanoparticles to enhance formaldehyde sensing properties. J Phys Chem Solids. 2019;124:36.

    CAS  Google Scholar 

  28. Van Hoang N, Hung CM, Hoa ND, Van Duy N, Park I, Van Hieu N. Excellent detection of H2S gas at ppb concentrations using ZnFe2O4 nanofibers loaded with reduced graphene oxide. Sens Actuators B. 2019;282:876.

    Google Scholar 

  29. Tyagi P, Sharma A, Tomar M, Gupta V. Metal oxide catalyst assisted SnO2 thin film based SO2 gas sensor. Sens Actuators B. 2016;224:282.

    CAS  Google Scholar 

  30. Izu N, Hagen G, Schonauer D, Roder-Roith U, Moos R. Application of V2O5/WO3/TiO2 for resistive-type SO2 sensors. Sensors. 2011;11(3):2982.

    CAS  Google Scholar 

  31. Zhang DZ, Wu JF, Cao YH. Room-temperature SO2 gas-sensing properties based on a metal-doped MoS2 nanoflower: an experimental and density functional theory investigation. J Mater Chem A. 2017;5(39):20666.

    CAS  Google Scholar 

  32. Li WW, Guo JH, Cai L, Qi WZ, Sun YL, Xu JL, Sun MX, Zhu HW, Xiang L, Xie D, Ren TL. UV light irradiation enhanced gas sensor selectivity of NO2 and SO2 using rGO functionalized with hollow SnO2 nanofibers. Sens Actuators B. 2019;290:443.

    CAS  Google Scholar 

  33. Guo RS, Han YT, Su C, Chen XW, Zeng M, Hu NT, Su YJ, Zhou ZH, Wei H, Yang Z. Ultrasensitive room temperature NO2 sensors based on liquid phase exfoliated WSe2 nanosheets. Sens Actuators B. 2019;300:127013.

    CAS  Google Scholar 

  34. Guo SY, Yuan L, Liu XH, Zhou WH, Song XF, Zhang SL. First-principles study of SO2 sensors based on phosphorene and its isoelectronic counterparts: GeS, GeSe, SnS, SnSe. Chem Phys Lett. 2017;686:83.

    CAS  Google Scholar 

  35. Patel S, Chaki SH, Vinodkumar PC. Pure SnSe, In and Sb doped SnSe single crystals-growth, structural, surface morphology and optical bandgap study. J Cryst Growth. 2019;522:16.

    CAS  Google Scholar 

  36. Kumar R, Avasthi DK, Kaur A. Fabrication of chemiresistive gas sensors based on multistep reduced graphene oxide for low parts per million monitoring of sulfur dioxide at room temperature. Sens Actuators B. 2017;242:461.

    CAS  Google Scholar 

  37. Zhang DZ, Liu JJ, Jiang CX, Li P, Sun YE. High-performance sulfur dioxide sensing properties of layer-by-layer self-assembled titania-modified graphene hybrid nanocomposite. Sens Actuators B. 2017;245:560.

    CAS  Google Scholar 

  38. Wang XS, Liu Y, Dai J, Chen Q, Huang X, Huang W. Solution-processed p-SnSe/n-SnSe2 hetero-structure layers for ultrasensitive NO2 detection. Chem Eur J. 2020;26(17):3870.

    CAS  Google Scholar 

  39. Xu YS, Zheng LL, Yang C, Zheng W, Liu XH, Zhang J. Oxygen vacancies enabled porous SnO2 thin films for highly sensitive detection of triethylamine at room temperature. ACS Appl Mater Interfaces. 2020;12(18):20704.

    CAS  Google Scholar 

  40. Xu YS, Zheng W, Liu XH, Zhang LQ, Zheng LL, Yang C, Pinna N, Zhang J. Platinum single atoms on tin oxide ultrathin films for extremely sensitive gas detection. Mater Horiz. 2020;7(9):1519.

    CAS  Google Scholar 

  41. Guo J, Li YW, Jiang B, Gao HY, Wang TS, Sun P, Liu FM, Yan X, Liang XS, Gao Y, Zhao J, Lu GY. Xylene gas sensing properties of hydrothermal synthesized SnO2–Co3O4 microstructure. Sens Actuators B. 2020;310:127780.

    CAS  Google Scholar 

  42. Bai JL, Zhao CH, Gong HM, Wang Q, Huang BY, Sun GZ, Wang YR, Zhou JY, Xie EQ, Wang F. Debye-length controlled gas sensing performances in NiO@ZnO p–n junctional core-shell nanotubes. J Phys D Appl Phys. 2019;52(28):285103.

    CAS  Google Scholar 

  43. Xu YS, Zheng LL, Yang C, Zheng W, Liu XH, Zhang J. Chemiresistive sensors based on core-shell ZnO@TiO2 nanorods designed by atomic layer deposition for n-butanol detection. Sens Actuators B. 2020;310:127846.

    CAS  Google Scholar 

  44. Seif A, Nikfarjam A, Ghassem HH. UV enhanced ammonia gas sensing properties of PANI/TiO2 core-shell nanofibers. Sens Actuators B. 2019;298:126906.

    CAS  Google Scholar 

  45. Beniwai A, Sunny. Electrospun SnO2/PPy nanocomposite for ultra-low ammonia concentration detection at room temperature. Sens Actuators B. 2019; 296:126660.

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (No.51777215), and the Key Laboratory of Engineering Dielectrics and Its Application (Harbin University of Science and Technology), Ministry of Education (No. KFZ1801).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Zhi Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, QN., Yang, ZM., Wang, WW. et al. Sulfur dioxide gas sensing at room temperature based on tin selenium/tin dioxide hybrid prepared via hydrothermal and surface oxidation treatment. Rare Met. 40, 1588–1596 (2021). https://doi.org/10.1007/s12598-020-01575-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-020-01575-2

Keywords

Navigation