Skip to main content
Log in

Glycine–nitrate combustion engineering of neodymium cobaltite nanocrystals

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

NdCoO3 nanocrystals formed via glycine–nitrate combustion method followed by heat treatment has been systematically studied. Formation of NdCoO3 nanocrystals with minimal size of 7–10 nm from X-ray amorphous combustion products has been elucidated to be a very rapid process, occurring at the temperature of 550–600 °C for 5–30 min. The comparison of the minimum sizes of NdCoO3 crystallites obtained from the offered empirical relation dmin = unit cell·N (where N is 7–12 and unit cell is elementary cell parameter) and the data determined on the basis of X-ray diffraction (XRD) and transmission electron microscopy (TEM) showed good correlation. The existence of special nanoporous microstructure and spatial limitations prevent NdCoO3 particle growth. The kinetic equation based on Avrami–Erofeev nucleation model was offered to be correlated well with experimental data of fractional conversion (α) versus isothermal time (τ). The apparent activation energy (Ea = (338 ± 32) kJ) of formation of NdCoO3 nanocrystals from X-ray amorphous combustion products obtained in excess of oxidant followed by heat treatment at 550–600 °C was determined.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sinhole MN, Omondi B, Ndungu PG. Synthesis and characterization of Ce0.6Sr0.4Fe0.8Co0.2O3−δ perovskite material: potential cathode material for low temperature SOFCs. J Rare Earth. 2017;35(4):389.

    Google Scholar 

  2. Hongyan S, Wenhui M, Jie Y, Xiuhua C, Hangsheng L. Preparation and characterization of La0.8Sr0.04Ca0.16Co0.6Fe0.4O3–δ-La0.9Sr0.1Ga0.8Mg0.2O3 composite cathode thin film for SOFC by slurry spin coating. J Rare Earths. 2010;28(6):917.

    Google Scholar 

  3. Mulmi S, Thangadurai V. A perovskite-type Nd0,8Sr0,2Co0,8Fe0,2O3-δ cathode for advanced solid oxide fuel cell. Chem Commun. 2019;55(26):3713.

    CAS  Google Scholar 

  4. Wang Q, Yuan Y, Han M, Zhu P. Synthesis and characterization of Ba0.5Sr0.5Co0.8Fe0.2O3−σ. Rare Met. 2009;28(1):39.

    Google Scholar 

  5. Elkalashy SI, Gilev AR, Aksenova TV, Urusova AS, Cherepanov VA. Phase equilibria, structure and properties of complex oxides in the NdFeO3−δ–SrFeO3−δ–SrCoO3−δ–NdCoO3–δ system as potential cathodes for SOFCs. Solid State Ion. 2018;316:85.

    CAS  Google Scholar 

  6. Rajasekhar M, Subramania A, Muzhumathi S. Microwave-assisted combustion synthesis of nanocrystalline NdCoO3 cathode material for intermediate temperature solid oxide fuel cells (IT-SOFCs) application. J Environ Nanotechnol. 2014;3(4):86.

    Google Scholar 

  7. Wang H, Zhang Y, Geng Z, Zhang Q, Gai Y, Ding W. SrCo0.7Fe0.2Nb0.1O3−δ perovskite stabilized by niobium for oxygen permeation. Rare Met. 2012;31(4):392.

    CAS  Google Scholar 

  8. Gao F, Liu H, Hu X, Chen J, Huang Z, Xia C. Selective hydrogenolysis of furfuryl alcohol to 1,5- and 1,2-pentanediol over Cu-LaCoO3 catalysts with balanced CuO–CoO sites. Chin J Catal. 2018;39(10):1711.

    CAS  Google Scholar 

  9. Terracciano AC, De Oliveira ST, Vasu SS, Orlovskaya N. LaCoO3 catalytically enhanced MgO partially stabilized ZrO2 in heterogeneous methane combustion. Exp Therm Fluid Sci. 2018;90:330.

    CAS  Google Scholar 

  10. Choudhary VR, Mondal KC. CO2 reforming of methane combined with steam reforming or partial oxidation of methane to syngas over NdCoO3 perovskite-type mixed metal-oxide catalyst. Appl Energy. 2006;83(9):1024.

    CAS  Google Scholar 

  11. Zhang Y, Liu J, Liu Y, Ding W, Lu X. Perovskite-type oxygen-permeable membrane BaCo0.7Fe0.2Nb0.1O3−δ for partial oxidation of methane in coke oven gas to hydrogen. Rare Met. 2010;29(3):231.

    Google Scholar 

  12. Vazhenin VA, Potapov AP, Asatryan GR, Petrosyan AG, Ovanesyan KL, Fokin AV. Monoclinic centers of rare-earth S ions in yttrium orthoaluminate crystals. Phys Solid State. 2017;59(9):1812.

    CAS  Google Scholar 

  13. Moretti F, Hovhannesyan K, Derdzyan M, Bizarri GA, Bourret ED, Petrosyan AG, Dujardin C. Consequences of Ca codoping in YAlO3: Ce single crystals. ChemPhysChem. 2017;18(5):493.

    CAS  Google Scholar 

  14. Chen Y, Wang D, Qin H, Zhang H, Zhang Z, Zhou G, Gao C, Hu J. CO2 sensing properties and mechanism of PrFeO3 and NdFeO3 thick film sensor. J Rare Earths. 2019;37(1):80.

    Google Scholar 

  15. Malavasi L, Tealdi C, Flor G, Chiodelli G, Cervetto V, Montenero A, Borella M. NdCoO3 perovskite as possible candidate for CO-sensors: thin films synthesis and sensing properties. Sens Actuat B Chem. 2005;105(2):407.

    CAS  Google Scholar 

  16. Liu H, Sun H, Xie R, Zhang X, Zheng K, Peng T, Wu X, Zhang Y. Substrate-dependent structural and CO sensing properties of LaCoO3 epitaxial films. Appl Surf Sci. 2018;442:742.

    CAS  Google Scholar 

  17. Gildo-Ortiz L, Guillén-Bonilla H, Rodríguez-Betancourtt VM, Blanco-Alonso O, Guillén-Bonilla A, Santoyo-Salazar J, Romero-Ibarra IC, Reyes-Gómez J. Key processing of porous and fibrous LaCoO3 nanostructures for successful CO and propane sensing. Ceram Int. 2018;44(13):15402.

    CAS  Google Scholar 

  18. Abdel-Latif IA, Rahman MM, Khan SB. Neodymium cobalt oxide as a chemical sensor. Result Phys. 2018;8:578.

    Google Scholar 

  19. Proskurina OV, Nogovitsin IV, Il’ina TS, Danilovich DP, Abiev RS, Gusarov VV. Formation of BiFeO3 nanoparticles using impinging jets microreactor. Russ J Gen Chem. 2018;88(10):2139.

    CAS  Google Scholar 

  20. Ataee-Esfahani H, Liu J, Hu M, Miyamoto N, Tominaka S, Wu KCW, Yamauchi Y. Mesoporous metallic cell: design of uniformly sized hollow mesoporous Pt–Ru particles with tunable shell thicknesses. Small. 2013;9(7):1047.

    CAS  Google Scholar 

  21. Bastakoti BP, Ishihara S, Leo SY, Ariga K, Wu KCW, Yamauchi Y. Polymeric micelle assembly for preparation of large-sized mesoporous metal oxide with various composition. Langmiur. 2014;30(2):651.

    CAS  Google Scholar 

  22. Malgras V, Henzie J, Takei T, Yamauchi Y. Stable blue luminescent CsPbBr 3 perovskite nonocrystals confined in mesoporous thin films. Angew Chem Int Ed. 2018;57(29):8881.

    CAS  Google Scholar 

  23. Nandi M, Mondal J, Sarkar K, Yamauchi Y, Bhaumik A. Highly ordered acid functionalized SBA-15: a novel organocatalyst for the preparation of xantethenes. Chem Commun. 2011;47(23):6677.

    CAS  Google Scholar 

  24. Yamauchi Y, Nagaura T, Ishikawa A, Chikyow T, Inoue S. Evolution of standing mesochannels on porous anodic alumina substrate with designed conical holes. J Am Chem Soc. 2008;130(31):10165.

    CAS  Google Scholar 

  25. Popkov VI, Tugova EA, Bachina AK, Almyasheva OV. The formation of nanocrystalline orthoferrites of rare-earth elements XFeO3 (X = Y, La, Gd) via heat treatment of coprecipitated hydroxides. Russ J Gen Chem. 2017;87(11):2516.

    CAS  Google Scholar 

  26. Almjasheva OV, Krasilin AA, Gusarov VV. Formation mechanism of core–shell nanocrystals obtained via dehydration of coprecipitated hydroxides at hydrothermal conditions. Nanosyst Phys Chem Math. 2018;9(4):568.

    CAS  Google Scholar 

  27. Huang HS, Chang KH, Suzuki N, Yamauchi Y, Hu CC, Wu KCW. Evaporation-induced coating of hydrous ruthenium oxide on mesoporous silica nanoparticles to develop high-performance supercapacitors. Small. 2013;9(15):2520.

    CAS  Google Scholar 

  28. Tugova E, Yastrebov S, Karpov O, Smith R. NdFeO3 nanocrystals under glycine nitrate combustion formation. J Cryst Growth. 2017;467:88.

    CAS  Google Scholar 

  29. Karpov ON, Tomkovich MV, Tugova EA. Formation of Nd1−xBixFeO3 nanocrystals under conditions of glycine-nitrate synthesis. Russ J Gen Chem. 2018;88(10):2133.

    CAS  Google Scholar 

  30. Popkov VI, Almjasheva OV, Nevedomskyi VN, Panchuk VV, Semenov VG, Gusarov VV. Effect of spatial constraints on the phase evolution of YFeO3-based nanopowders under heat treatment of glycine-nitrate combustion products. Ceram Int. 2018;44(17):20906.

    CAS  Google Scholar 

  31. Lomanova NA, Tomkovich MV, Sokolov VV, Ugolkov VL, Panchuk VV, Semenov VG, Pleshakov IV, Volkov MP, Gusarov VV. Thermal and magnetic behavior of BiFeO3 nanoparticles prepared by glycine-nitrate combustion. J Nanopart Res. 2018;20(2):17.

    Google Scholar 

  32. Komlev AA, Gusarov VV. Glicine-nitrate combustion synthesis of nonstoichiometric Mg–Fe spinel nanopowders. Inorg Mater. 2014;50(12):1247.

    CAS  Google Scholar 

  33. Deganello F, Tyagi AK. Solution combustion synthesis, energy and environment: best parameters for better materials. Progr Cryst Growth Charact Mater. 2018;64(2):23.

    CAS  Google Scholar 

  34. Vidal K, Morán-Ruiz A, Larrañaga A, Porras-Vázquez JM, Slater PR, Arriortua MI. Characterization of LaNi0.6Fe0.4O3 perovskite synthesized by glycine-nitrate combustion method. Solid State Ion. 2015;269:24.

    CAS  Google Scholar 

  35. Aruna ST, Mukasyan AS. Combustion synthesis and nanomaterials. Curr Opin Solid State Mater Sci. 2018;12(3–4):44.

    Google Scholar 

  36. Ostroushko AA, Russkikh OV. Oxide material synthesis by combustion of organic-inorganic compositions. Nanosyst Phys Chem Math. 2017;8(4):476.

    CAS  Google Scholar 

  37. Bellakki MB, Madhu C, Greindl T, Kohli S, McCurdy P, Manivannan V. Synthesis and measurement of structural and magnetic properties of K-doped LaCoO3 perovskite materials. Rare Met. 2010;29(5):491.

    CAS  Google Scholar 

  38. Silva G, Santos J, Martinelli D, Pedrosa A, de Souza M, Melo D. Synthesis and characterization of LaNixCo1−xO3 perovskites via complex precursor methods. Mater Sci Appl. 2010;1(2):39.

    CAS  Google Scholar 

  39. Sathyamoorthy B, Md Gazzali PM, Murugesan C, Chandrasekaran G. Electrical properties of samarium cobaltite nanoparticles synthesized using sol–gel autocombustion route. Mater Res Bull. 2014;53:169.

    CAS  Google Scholar 

  40. Hernández N, González-González VA, Dzul-Bautista IB, Cienfuegos-Pelaes RF, Barandiaran JM, Gutierréz J, Hernández T, Ortiz-Méndez U, Garcia-Loera AF. Characterization and magnetic properties of NdxBi1−xFe0.95Co0.05O3 nanopowders synthesized by combustion-derived method at low temperature. J Magn Magn Mater. 2015;377:466.

    Google Scholar 

  41. Young RA. The Rietveld Method, IUCr Monograph on Crystallography. Oxford: Oxford University Press; 1993. 102.

    Google Scholar 

  42. Khawam A, Flanagan DR. Solid-state kinetic models: basics and mathematical fundamentals. J Phys Chem B. 2006;110(35):17315.

    CAS  Google Scholar 

  43. Petrov AN, Kropanev AY, Jukovskiy VM, Cherepanov VA, Neudachina GK. The conditions and mechanism of solid state synthesis of the rare earth cobaltates RCoO3 (R = La, Pr, Nd, Sm, Gd). Zh Neorg Khim. 1981;26(12):3190.

    CAS  Google Scholar 

  44. Christian JW. The Theory of Transformation in Metals and Alloys. New York: Pergamon Press; 1965. 1.

    Google Scholar 

  45. Almjasheva OV, Lomanova NA, Popkov VI, Proskurina OV, Tugova EA, Gusarov VV. The minimal size of oxide nanocrystals: phenomenological thermodynamic versus crystal-chemical approaches. Nanosyst Phys Chem Math. 2019;10(4):428.

    CAS  Google Scholar 

  46. Khambaty S, Larson MA. Crystal regeneration and growth of small crystals in contact nucleation. I&EC Fundamentals. 1978;17(3):160.

    CAS  Google Scholar 

  47. Kuni FM, Rusanov AI. The homogeneous nucleation theory and the fluctuation of the center of mass of a drop. Phys Lett. 1969;29A(6):337.

    Google Scholar 

  48. Miyazaki CM, Riul A. Low-Dimensional Systems: Nanoparticles. In: Da Róz AL, Ferreira M, Leite FL, Oliveira ON, editors. Nanostructures. Norwich: William Andrew Publishing; 2017. 125.

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Russian Science Foundation (No. 16-13-10252).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ekaterina Alekseevna Tugova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tugova, E.A., Karpov, O.N. Glycine–nitrate combustion engineering of neodymium cobaltite nanocrystals. Rare Met. 40, 1778–1784 (2021). https://doi.org/10.1007/s12598-020-01544-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-020-01544-9

Keywords

Navigation