Skip to main content
Log in

Synthesis and Characterization of NiO Nanoparticles by Chemical Co-precipitation Method: an Easy and Cost-Effective Approach

  • Condensed Matter
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

In the present work, NiO nanoparticles are synthesized using chemical co-precipitation method which is an easy and cost-effective approach. Aqueous solutions of the precursors containing Ni(NO3)2.6H2O and NaOH pellets are calcined at 300 °C for 2 h. The structural, morphological, compositional, optical study, and thermal analysis of the synthesized powdered product was investigated using X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), UV–vis absorption spectroscopy, Fourier transform infrared spectroscopy (FTIR) and thermo-gravimetric analysis. FTIR study shows the presence of functional groups in the synthesized NiO nanoparticles. The powder XRD pattern along with Rietveld refinement data reveals that the prepared sample is NiO with face-centered cubic (fcc) structure (Fm-3 m space group) having average crystallite size ranging from 4 to 6 nm. The optical band gap of the synthesized NiO nanoparticles (estimated from Tauc’s plot) is found to be ~ 3.20 eV which is less than the bulk NiO clearly showing red shift. This could be attributed due to the presence of chemical defects or vacancies resulting in the formation of some trap states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M. Meyer, A.M. Albrecht-Gary, C.O. Dietrich-Buchecker, J.P. Sauvage, J. Am. Chem. Soc. 119, 4599 (1997)

    Article  Google Scholar 

  2. V.T. Liveri, Controlled Synthesis of Nanoparticles in Microheterogeneous Systems (Springer, New York, 2006)

    Google Scholar 

  3. Y. Wu, Y. He. T. Wu, T. Chen, W. Weng, H. Wan, Mater. Lett. 61(14–15), 3174 (2007)

  4. H. Yang, Q. Tao, X. Zhang, A. Tang, J. Ouyang, J. Alloys Compds. 459, 98 (2008)

    Article  Google Scholar 

  5. J. He, H. Lindstrom, A. Hagfeldt, E.S. Lindquist, J. Phys. Chem. B 103, 8940 (1999)

    Article  Google Scholar 

  6. K. Yoshimura, T. Miki, S. Tanemura, Jpn. J. Appl. Phys. 34, 2440 (1995)

    Article  ADS  Google Scholar 

  7. K. Liu, M. Anderson, J. Electrochem. Soc. 143, 124 (1966)

    Article  Google Scholar 

  8. I. Hotovy, V. Rehacek, P. Siciliano, S. Capone, L. Spiess, Thin Solid Films 418, 9 (2002)

    Article  ADS  Google Scholar 

  9. H. Sato, T. Minami, S. Takata, T. Yamada, Thin Solid Films 236(1–2), 27 (1993)

    Article  ADS  Google Scholar 

  10. C.R. Makkus, K. Hemmes, D.W.H.J. Wit, J. Electrochem. Soc. 141, 3429 (1994)

    Article  ADS  Google Scholar 

  11. M.I. Chan, Y.T. Hsu, C.F. Hong, Appl. Phys. Lett. 81, 1899 (2002)

    Article  ADS  Google Scholar 

  12. M. Alagiri, S. Ponnusamy, C. Muthamizhchelvam, J. Mater Sci: Mater Electron 23, 728 (2012)

    Google Scholar 

  13. L. Xiang, X.Y. Deng, Y. Jin, Scrip. Materialia 47, 219 (2002)

    Article  Google Scholar 

  14. S. Takami, R. Hayakawa, Y. Wakayama, T. Chikyow, Nanotech. 21, 134009 (2010)

  15. D.V. Lyso, D.V. Kuznetsov, A.G. Yudin, D.S. Muratov, V.V. Levina, D.I. Ryzhonkov, Nanotechnol. Res. 5, 493 (2010)

    Google Scholar 

  16. W. Wang, Y. Liu, C. Xu, C. Zheng, G. Wang, Chem. Phys. Lett. 362, 119 (2002)

    Article  ADS  Google Scholar 

  17. N.M. Hosny, Polyhedron 30, 470 (2011)

    Article  Google Scholar 

  18. A. Jena, S.A. Shivashankar, A.I.P. Conf, Proc. 1063, 211 (2008)

    Google Scholar 

  19. P. Palanisamy, A.M. Raichur, Mater. Sci. Eng. C 29, 199 (2009)

    Article  Google Scholar 

  20. S.S.L. Irudaya, D.M. Priya, V. Shally, J. Gerardin, Inter. Res. J. Adv. Engg. Sci. 2, 55 (2016)

    Google Scholar 

  21. A. Kalam, A.G. Al-Sehemi, A.S. Al-Shihri, G. Du, T. Ahmad, Mater. Charac. 68, 77 (2012)

    Article  Google Scholar 

  22. N. Srivastava, P.C. Srivastava, Bull. Mater. Sci. 33, 653 (2010)

    Article  Google Scholar 

  23. K. Nakamoto, Infrared Spectra of Inorganic and Coordination Compound, 4th edn. (Chemical Industry Press, Beijing, 1991)

    Google Scholar 

  24. Z. Wei, H. Qiao, H. Yang, C. Zhang, X. Yan, J. Alloy Compd. 479, 855 (2009)

    Article  Google Scholar 

  25. Y.B.M. Mahaleh, S.K. Sadrnezhaad and D. Hosseini, Journal of Nanomaterials 2008, 4 pages (2008)

  26. A.M. Abdeen, O.M. Hemeda, E.E. Assem, M.M. Elsehly, J. Magn. Magn. Mater. 238, 75 (2002)

    Article  ADS  Google Scholar 

  27. https://www.ill.eu/sites/fullprof/

  28. S. Carbonin, F. Martignago, G. Menegazzo, A. Negro, Phys. Chem. Miner. 29, 503 (2002)

    Article  ADS  Google Scholar 

  29. C. Suryanarayana, M.G. Nortan, X-Ray Diffraction: A Practical Approach (Plenum Publishing Corporation, New York, 1998)

    Book  Google Scholar 

  30. L. Kumar, P. Kumar, A. Narayan, M. Kar, Intern. Nano Lett. 3, 8 (2013)

    Article  Google Scholar 

  31. T. Shahid, T.M. Khan, M. Zakria, R.I. Shakoor, M. Arfan, S. Khursheed, J. Mater. Sci. Engg. 5, 287 (2016)

    Google Scholar 

  32. S. Rakshit, S. Ghosh, S. Chall, S.S. Mati, S.P. Moulik, S.C. Bhattacharya, RSC Adv. 3, 19348 (2013)

    Article  ADS  Google Scholar 

  33. A. Hagfeldt, M. Gratzel, Chem. Rev. 95, 49 (1995)

    Article  Google Scholar 

  34. A.J. Varkey, A.F. Fort, Thin Solid Films 235, 47 (1993)

    Article  ADS  Google Scholar 

  35. N. Srivastava, P.C. Srivastava, Physica E 42, 2225 (2010)

    Article  ADS  Google Scholar 

  36. X. Song, L. Gao, J. Am. Ceram. Soc. 91, 346 (2008)

    Google Scholar 

  37. L. Kumari, W.Z. Li, C.H. Vannoy, R.M. Leblanc, D.Z. Wang, Cryst. Res. Technol. 44, 495 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

Authors are grateful to Prof. Rajendra K. Singh, Department of Physics, BHU for getting FTIR, UV-vis, and TG-DTA measurements done on our samples. The authors are much thankful to Dr. O.P. Sinha (Director, Amity Institute of Nanotechnology, Noida) for extending us the XRD facility. Thanks are also due to Dr. Manish K. Srivastava (Department of Physics, Banasthali Vidyapith, Rajasthan) for doing FE-SEM measurements of our samples. Mr. Anadi Krishna Atul also wants to acknowledge the University for providing the financial assistance in the form of UGC-Research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neelabh Srivastava.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atul, A.K., Srivastava, S.K., Gupta, A.K. et al. Synthesis and Characterization of NiO Nanoparticles by Chemical Co-precipitation Method: an Easy and Cost-Effective Approach. Braz J Phys 52, 2 (2022). https://doi.org/10.1007/s13538-021-01006-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13538-021-01006-2

Keywords

Navigation