Skip to main content

Advertisement

Log in

Forging–microstructure–tensile properties correlation in a new near β high-strength titanium alloy

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Microstructures and tensile properties of a new β high-strength titanium alloy Ti-5321 (Ti–5Al–3Mo–3V–2Zr–2Cr–1Nb–1Fe) were investigated in this study. Four microstructures, including equiaxed microstructure (EM), bimodal microstructure (BM), basket-weave microstructure (WM) and lamellar microstructure (LM), were tailored by changing the forging process, and the influences of different microstructures on tensile properties were also analyzed. The results indicated that Ti-5321 exhibits a better combination of strength and ductility, compared to Ti-5553, Ti-1023, BT22 and Ti15-3. The ultimate tensile strength, total elongation and reduction in area could be achieved in a range of 1200–1300 MPa, 10%–15% and 40%–60%, respectively. The influences of variant selection on the tensile properties in Ti-5321 alloy were also analyzed. After β forging and solution treatment, α phase maintained strictly Burgers orientation relation with adjacent β phase. Morphological features of the fractography in BM and LM were also explored to further explain the tensile properties and the fracture mode of Ti-5321 alloy.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Banerjee D, Williams J. Perspective on titanium science and technology. Acta Mater. 2013;61(3):844.

    Article  CAS  Google Scholar 

  2. Huang C, Zhao Y, Xin S, Wei Z, Qian L, Zeng W. Effect of microstructure on tensile properties of Ti–5Al–5Mo–5V–3Cr–1Zr alloy. J Alloys Compd. 2017;693:582.

    Article  CAS  Google Scholar 

  3. Qin D, Lu Y, Guo D, Zheng L, Liu Q, Zhou L. Tensile deformation and fracture of Ti–5Al–5V–5Mo–3Cr–1.5Zr–0.5Fe alloy at room temperature. Mater Sci Eng A. 2013;587(1):100.

    Article  CAS  Google Scholar 

  4. Santhosh R, Geetha M, Saxena VK, Nageswararao M. Studies on single and duplex aging of metastable beta titanium alloy Ti–15V–3Cr–3Al–3Sn. J Alloys Compd. 2014;605(9):222.

    Article  CAS  Google Scholar 

  5. Chen Y, Du Z, Xiao S, Xu L, Tian J. Effect of aging heat treatment on microstructure and tensile properties of a new β high strength titanium alloy. J Alloys Compd. 2014;586:588.

    Article  CAS  Google Scholar 

  6. Zhuo L, Changmeng L, Dong L, Huaming W. Effect of heat treatment on microstructure and tensile properties of laser deposited titanium alloy TC21. Mater Res Innov. 2015;18(4):929.

    Google Scholar 

  7. Li D, Wang K, Yan Z, Cao Y, Misra RDK, Xin R. Evolution of microstructure and tensile properties during the three-stage heat treatment of TA19 titanium alloy. Mater Sci Eng A. 2018;716:157.

    Article  CAS  Google Scholar 

  8. Li C, Chen J, Li W, He JJ, Qiu W, Ren YJ. Study on the relationship between microstructure and mechanical property in a metastable β titanium alloy. J Alloys Compd. 2015;627(10):222.

    Article  CAS  Google Scholar 

  9. Li CL, Zou LN, Fu YY, Ye WJ, Hui SX. Effect of heat treatments on microstructure and property of a high strength/toughness Ti–8V–1.5Mo–2Fe–3Al alloy. Mater Sci Eng A. 2014;616:207.

    Article  CAS  Google Scholar 

  10. Lu J, Zhao Y, Peng G, Zhang Y, Niu H, Wei Z. Precipitation behavior and tensile properties of new high strength beta titanium alloy Ti-1300. J Alloys Compd. 2015;637:1.

    Article  CAS  Google Scholar 

  11. Shekhar S, Sarkar R, Kar SK, Bhattacharjee A. Effect of solution treatment and aging on microstructure and tensile properties of high strength β titanium alloy, Ti–5Al–5V–5Mo–3Cr. Mater Des. 2015;66:596.

    Article  CAS  Google Scholar 

  12. Shi Y, Zhang G, Ming L, Guo D, Zhang Z, Wei B. Effect of heat treatment on the microstructure and tensile properties of deformed α/β Ti–47Zr–5Al–3V alloy. J Alloys Compd. 2016;665(14):1.

    Article  CAS  Google Scholar 

  13. Jones NG, Dashwood RJ, Dye D, Jackson M. Thermomechanical processing of Ti–5Al–5Mo–5V–3Cr. Mater Sci Eng A. 2008;490(1):369.

    Article  Google Scholar 

  14. Kar SK, Suman S, Shivaprasad S, Chaudhuri A, Bhattacharjee A. Processing-microstructure-yield strength correlation in a near β Ti alloy, Ti–5Al–5Mo–5V–3Cr. Mater Sci Eng A. 2014;610(5):171.

    Article  CAS  Google Scholar 

  15. Shi ZF, Guo HZ, Han JY, Yao ZK. Microstructure and mechanical properties of TC21 titanium alloy after heat treatment. Trans Nonferr Met Soc. 2013;23(10):2882.

    Article  CAS  Google Scholar 

  16. Quan GZ, Wen HR, Pu SA, Zou ZY, Wu DS. Optimization of β/near-β forging process parameters of Ti–6.5Al–3.5Mo–1.5Zr–0.3Si by using processing maps. Mater Charact. 2015;60(7):492.

    Google Scholar 

  17. Cui C, Hu B, Zhao L, Liu S. Titanium alloy production technology, market prospects and industry development. Mater Des. 2011;32(3):1684.

    Article  CAS  Google Scholar 

  18. Zhao YQ, Ma CL, Chang H, Xin SW, Zhou L. New high strength and high toughness titanium alloy with 1200 MPa. Mater China. 2016;35(12):914.

    CAS  Google Scholar 

  19. Lü ZD, Zhang CJ, Du ZX. Relationship between microstructure and tensile properties on a near-β titanium alloy after multidirectional forging and heat treatment. Rare Met. 2019;38(3):336.

    Article  Google Scholar 

  20. Fan J, Li J, Kou H, Hua K, Tang B, Zhang Y. Influence of solution treatment on microstructure and mechanical properties of a near β titanium alloy Ti-7333. Mater Des. 2015;83(4):499.

    Article  CAS  Google Scholar 

  21. Zhao YH, Ge P, Zhao YQ. Hot deformation behavior of Ti-1300 alloy. Rare Met Mater Eng. 2009;38(1):46.

    CAS  Google Scholar 

  22. Cai X, Lei M, Wan MP. Continuous cooling transformation diagram of TC17 titanium alloy. Chin J Rare Met. 2019;43(12):1291.

    Google Scholar 

  23. Furuhara T, Takagi S, Watanabe H, Maki T. Crystallography of grain boundary α precipitates in a β titanium alloy. Metall Mater Trans A. 1996;27(6):1635.

    Article  Google Scholar 

  24. Foltz JW, Welk B, Collins PC, Fraser HL, Williams JC. Formation of grain boundary α in β Ti alloys: its role in deformation and fracture behavior of these alloys. Metall Mater Trans A. 2011;42(3):645.

    Article  CAS  Google Scholar 

  25. Williams JC, Hickman BS, Leslie DH. The effect of ternary additions on the decomposition of metastable beta-phase titanium alloys. Metall Trans. 1971;2(2):477.

    Article  CAS  Google Scholar 

  26. Jones NG, Dashwood RJ, Dye D, Jackson M. The flow behavior and microstructural evolution of Ti–5Al–5Mo–5V–3Cr during subtransus isothermal forging. Metall Mater Trans A. 2009;40(8):1944.

    Article  Google Scholar 

  27. Srinivasu G, Natraj Y, Bhattacharjee A, Nandy TK, Nageswara Rao GVS. Tensile and fracture toughness of high strength β titanium alloy, Ti–10V–2Fe–3Al, as a function of rolling and solution treatment temperatures. Mater Des. 2013;47:323.

    Article  CAS  Google Scholar 

  28. Yang Y, Wang W, Ma B, Wen Z, Wang Y, Ma H. Effect of microstructure on mechanical properties of BT22 titanium alloy bar. Rare Met Lett. 2007;26:3.

    Google Scholar 

  29. Huang X, Bao RQ, Huang LJ, Lin HZ, Guo L. Effect of hot-die forging process on the microstructure and properties of Ti1023 alloy. Rare Met Mater Eng. 2004;33(5):539.

    Google Scholar 

  30. Zhao YQ, Qu HL, Feng L, Yang HY, Li H. Research on high strength, high toughness and high damage-tolerant titanium alloy. Titan Ind Prog. 2004;21(1):22.

    Google Scholar 

  31. Boyer RR, Rack HJ, Venkatesh V. The influence of thermomechanical processing on the smooth fatigue properties of Ti–15V–3Cr–3Al–3Sn. Mater Sci Eng A. 1998;243(1–2):97.

    Article  Google Scholar 

  32. Sadeghpour S, Abbasi SM, Morakabati M, Bruschi S. Correlation between alpha phase morphology and tensile properties of a new beta titanium alloy. Mater Des. 2017;121:24.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the International Science and Technology Cooperation Program of China (No. 2015DFA51430) and the National Natural Science Foundation of China (No. 51471136).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Qing Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Xin, SW., Zhao, YQ. et al. Forging–microstructure–tensile properties correlation in a new near β high-strength titanium alloy. Rare Met. 40, 2109–2117 (2021). https://doi.org/10.1007/s12598-020-01533-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-020-01533-y

Keywords

Navigation