Skip to main content
Log in

The Flow Behavior and Microstructural Evolution of Ti-5Al-5Mo-5V-3Cr during Subtransus Isothermal Forging

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

High-strength metastable β alloys, for example, Ti-5Al-5Mo-5V-3Cr, have replaced steel as the material of choice for large components, such as the main truck beam on the latest generation of airframes. The production of these components is carried out by hot near-net-shape forging, during which process variable control is essential to achieve the desired microstructural condition and subsequent mechanical properties. The flow behavior and microstructural evolution during subtransus isothermal forging of Ti-5Al-5Mo-5V-3Cr has been investigated for two different starting microstructures and analysis has incorporated previously published results. The flow behavior, irrespective of initial microstructural condition, is found to be very similar at strains ≥0.35. It is thought that this is due to a common microstructural state being reached, where dynamic recovery of the β phase is the dominating deformation mechanism. At strains <0.35, the flow behavior is believed to be dominated by the morphology and volume fraction of the α phase. Small globular α particles are thought to have little effect on the flow behavior, while the observed flow softening is directly linked to the fragmentation of acicular α precipitates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. JEOL is a trademark of Japan Electron Optics Ltd., Tokyo.

  2. ImageJ (version 1.37), W. Rasband, National Institutes of Health, Bethesda, MD.

References

  1. R.R. Boyer and R.D. Briggs: J. Mater. Eng. Perform., 2005, vol. 14, pp. 681–85.

    Article  CAS  Google Scholar 

  2. J.C. Fanning and R.R. Boyer: Titanium 2003: Science and Technology, G. Luetjering and J. Albrecht, eds., Wiley-VCH, Hamburg, Germany, 2003, vol. IV, pp. 2635–42.

  3. R.R. Boyer: J. Met., 1994, vol. 46, pp. 20–23.

    Google Scholar 

  4. A. Hasegawa, S. Ishigai, and T. Matsushita: 6th World Conf. on Titanium, P. Lacombe, R. Tricot, and G. Beranger, eds., Les Editions de Physique, Les Ulis, Cannes, France, 1988, pp. 1263–68.

  5. S.L. Semiatin, V. Seetharaman, and A.K. Ghosh: Phil. Trans. R. Soc. London, Ser. A, 1999, vol. 357, pp. 1487–1512.

    Article  ADS  CAS  Google Scholar 

  6. S.L. Semiatin, V. Seetharaman, and I. Weiss: Mater. Sci. Eng. A, 1999, vol. 263, pp. 257–71.

    Article  Google Scholar 

  7. S.L. Semiatin: Acta Mater., 2001, vol. 49, pp. 3565–73.

    Article  CAS  Google Scholar 

  8. S.L. Semiatin and T.R. Bieler: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 1871–71.

    Article  CAS  Google Scholar 

  9. S.L. Semiatin and T.R. Bieler: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 1787–99.

    Article  CAS  ADS  Google Scholar 

  10. E.B. Shell and S.L. Semiatin: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 3219–29.

    Article  CAS  Google Scholar 

  11. M. Jackson, R. Dashwood, L. Christodoulou, and H.M. Flower: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 1317–27.

    Article  ADS  CAS  Google Scholar 

  12. M. Jackson, R.J. Dashwood, L. Christodoulou, and H.M. Flower: Mater. Sci. Technol., 2000, vol. 16, pp. 1437–44.

    Article  CAS  Google Scholar 

  13. N.G. Jones, R.J. Dashwood, D. Dye, and M. Jackson: Mater. Sci. Eng. A, 2008, vol. 490, pp. 369–77.

    Article  CAS  Google Scholar 

  14. M. Jackson, N.G. Jones, D. Dye, and R.J. Dashwood: Mater. Sci. Eng. A, 2009, vol. 501, pp. 248–54.

    Article  CAS  Google Scholar 

  15. R.R. Boyer: J. Met., 1992, vol. 44, pp. 23–25.

    CAS  Google Scholar 

  16. C.C. Chen, J.A. Hall, and R.R. Boyer: Titanium ‘80: Science and Technology, H. Kimura and O. Izumi, eds., TMS-AIME, Kyoto, Japan, 1983, pp. 457–66.

    Google Scholar 

  17. S.R. Seagle, K.O. Yu, and S. Giangiordano: Mater. Sci. Eng. A, 1999, vol. 263, pp. 237–42.

    Article  Google Scholar 

  18. J.D. Cotton, R.R. Boyer, R.D. Briggs, R.G. Baggerly, C.A. Meyer, M.D. Carter, W. Wood, G. Tewksbury, V. Li, and X. Yao: Ti-2007: Science and Technology, M. Ninomi, S. Akiyama, M. Ikeda, M. Hagiwara, and K. Maruyama, eds., The Japan Institute of Metals, Kyoto, 2007, pp. 471–74.

  19. J. Fanning: J. Mater. Eng. Perform., 2005, vol. 14, pp. 788–91.

    Article  CAS  Google Scholar 

  20. C.C. Chen and R.R. Boyer: J. Met., 1979, vol. 31, pp. 33–39.

    CAS  Google Scholar 

  21. R.R. Boyer: J. Met., 1980, vol. 32, pp. 61–65.

    ADS  CAS  Google Scholar 

  22. C.C. Chen: in Titanium Science and Technology, G. Luetjering, U. Zwicker, and W. Bunk, eds., Deuteche Gesellschaft fur Metallkunde e.V., Munich, 1984, vol. 1, pp. 461–68.

  23. M. Harper, R. Williams, G.B. Viswanathan, J. Tiley, R. Banerjee, D.J. Evans, and H.L. Fraser: Titanium 2003: Science and Technology, G. Lutjering and J. Albrecht, eds., Wiley-VCH, Hamburg, 2003, vol. 3, pp. 1559–66.

  24. N. Clement, A. Lenain, and P.J. Jacques: J. Met., 2007, vol. 59, pp. 50–53.

    CAS  Google Scholar 

  25. V. Venkatesh, M. Kamal, and J. Fanning: Ti-2007: Science and Technology, M. Niinomi, S. Akiyama, M. Ikeda, M. Hagiwara, and K. Maruyama, eds., The Japan Institute of Metals, Kyoto, 2007, pp. 503–06.

  26. C.M. Sellars and W.J.M. Tegart: Acta Metall., 1966, vol. 14, pp. 1136–38.

    Article  CAS  Google Scholar 

  27. I. Weiss and S.L. Semiatin: Mater. Sci. Eng. A, 1998, vol. 243, pp. 46–65.

    Article  Google Scholar 

  28. M. Jackson: Ph.D. Thesis, University of London, London, 2002, pp. 65–84.

Download references

Acknowledgments

The authors thank Messier–Dowty for the supply of material and Professor X. Wu, from the University of Birmingham, for facilitating forging at 950 °C. The work was carried out while NGJ was funded by an EPSRC DTA studentship under platform Grant No. ET/T26344/01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N.G. Jones.

Additional information

Manuscript submitted December 18, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jones, N., Dashwood, R., Dye, D. et al. The Flow Behavior and Microstructural Evolution of Ti-5Al-5Mo-5V-3Cr during Subtransus Isothermal Forging. Metall Mater Trans A 40, 1944–1954 (2009). https://doi.org/10.1007/s11661-009-9866-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-009-9866-5

Keywords

Navigation