Skip to main content
Log in

Strain-induced martensitic transformation in biomedical Co–Cr–W–Ni alloys

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The nucleation, variant selection, and orientation dependence of the strain-induced martensitic transformation (SIMT) process in biomedical Co–Cr–W–Ni alloys were investigated. The experimental results show that the ε-hexagonal-close-packed phase was preferentially formed at the Σ3 twin boundaries and high-angle grain boundaries during the tensile process. The theoretical analysis shows that the variant selection of SIMT is governed by Schmid’s law. However, the SIMTed ε-phase did not form equally on the two sides of the annealing twins, even though they had the same Schmid factor. This phenomenon is related to the mechanical work developed by the formation of the ε-phase. Only the side which has both high Schmid factor and high mechanical work can initiate the SIMT process. A strong 〈111〉 fiber texture was formed, and the ε-variants tended to appear in grains with orientations close to the 〈111〉 and 〈100〉 directions during the tensile process. These results can provide theoretical guidance for controlling the SIMT process of Co–Cr–W–Ni alloys to fabricate more reliable stents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Wang Z, Xu XW, Zhang B. Hot compression deformation behavior of biomedical Ni–Ti alloy. Rare Met. 2019;38(7):609.

    Article  CAS  Google Scholar 

  2. Ma XQ, Niu HZ, Yu ZT, Yu S, Wang C. Microstructural adjustments and mechanical properties of a cold-rolled biomedical near β–Ti alloy sheet. Rare Met. 2018;37(10):846.

    Article  CAS  Google Scholar 

  3. Li BQ, Li CL, Wang ZX, Lu X. Preparation of Ti–Nb–Ta–Zr alloys for load-bearing biomedical applications. Rare Met. 2019;38(6):571.

    Article  CAS  Google Scholar 

  4. Zhang EL, Fu S, Wang RX, Li HX, Liu Y, Ma ZQ, Liu GK, Zhu CS, Qin GW, Chen DF. Role of Cu element in biomedical metal alloy design. Rare Met. 2019;38(6):476.

    Article  CAS  Google Scholar 

  5. Zhao DP, Tang JC, Nie HM, Zhang Y, Chen YK, Zhang X, Li HX, Yan M. Macro-micron-nano-featured surface topography of Ti–6Al–4V alloy for biomedical applications. Rare Met. 2018;37(12):1055.

    Article  CAS  Google Scholar 

  6. Wang JL, Wan Y, Ma ZJ, Guo YC, Yang Z, Wang P, Li JP. Glass-forming ability and corrosion performance of Mn-doped Mg–Zn–Ca amorphous alloys for biomedical applications. Rare Met. 2018;37(7):579.

    Article  CAS  Google Scholar 

  7. Huang L, Su K, Zheng YF, Yeung KWK, Liu MX. Construction of TiO2/silane nanofilm on AZ31 magnesium alloy for controlled degradability and enhanced biocompatibility. Rare Met. 2019;38(6):588.

    Article  CAS  Google Scholar 

  8. Niinomi M, Nakai M, Hieda J. Development of new metallic alloys for biomedical applications. Acta Biomater. 2012;8(11):3888.

    Article  CAS  Google Scholar 

  9. Marrey RV, Burgermeister R, Grishaber RB, Ritchie RO. Fatigue and life prediction for cobalt–chromium stents: a fracture mechanics analysis. Biomaterials. 2006;27(9):1988.

    Article  CAS  Google Scholar 

  10. Byadretdinova MA, Ivanova RG, Lofis NA, Molotilov BV. Artificial heart valve made of Co–Cr–W–Ni alloy. Biomed Eng. 1986;20(1):21.

    Article  Google Scholar 

  11. Zaman HA, Sharif S, Idris MH, Kamarudin A. Metallic biomaterials for medical implant applications: a review. Appl Mech Mater. 2015;735:19.

    Article  Google Scholar 

  12. Narushima T, Mineta S, Kurihara Y, Ueda K. Precipitates in biomedical Co–Cr alloys. J Miner. 2013;65(4):489.

    CAS  Google Scholar 

  13. Zafarghandi MS, Abbasi SM, Momeni A. Effects of Nb on hot tensile deformation behavior of cast Haynes 25 Co–Cr–W–Ni alloy. J Alloys Compd. 2019;774:18.

    Article  Google Scholar 

  14. Kumar VA, Gupta RK, Murty SVSN, Prasad AD. Hot workability and microstructure control in Co20Cr15W10Ni cobalt-based superalloy. J Alloys Compd. 2016;676:527.

    Article  Google Scholar 

  15. Geetha M, Durgalakshmi D, Asokamani R. Biomedical implants: corrosion and its prevention—a review. Recent Pat Corros Sci. 2010;2:40.

    Article  Google Scholar 

  16. Ueki K, Ueda K, Narushima T. Microstructure and mechanical properties of heat-treated Co–20Cr–15W–10Ni alloy for biomedical application. Metall Mater Trans A. 2016;47(6):2773.

    Article  CAS  Google Scholar 

  17. Teague J, Cerreta E, Stout M. Tensile properties and microstructure of Haynes 25 alloy after aging at elevated temperatures for extended times. Metall Mater Trans A. 2004;35(9):2767.

    Article  Google Scholar 

  18. Gupta RK, Karthikeyan MK, Bhalia DN, Ghosh BR, Sinha PP. Effect of microstructure on mechanical properties of refractory Co–Cr–W–Ni alloy. Met Sci Heat Treat. 2008;50(3–4):175.

    Article  CAS  Google Scholar 

  19. Ueki K, Ueda K, Narushima T. Precipitate phases and mechanical properties of heat-treated ASTM F 90 Co–Cr–W–Ni alloy. Key Eng Mater. 2014;616:282.

    Article  Google Scholar 

  20. Yamanaka K, Mori M, Kuramoto K, Chiba A. Development of new Co–Cr–W-based biomedical alloys: effects of microalloying and thermomechanical processing on microstructures and mechanical properties. Mater Des. 2014;55:987.

    Article  CAS  Google Scholar 

  21. Kurosu S, Nomura N, Chiba A. Effect of sigma phase in Co–29Cr–6Mo alloy on corrosion behavior in saline solution. Mater Trans. 2006;47(8):1961.

    Article  CAS  Google Scholar 

  22. Ueki K, Ueda K, Nakai M, Nakano T, Narushima T. Microstructural changes during plastic deformation and corrosion properties of biomedical Co–20Cr–15W–10Ni alloy heat-treated at 873 K. Metall Mater Trans A. 2018;49(6):2393.

    Article  CAS  Google Scholar 

  23. Yamanaka K, Mori M, Chiba A. Enhanced mechanical properties of as-forged Co–Cr–Mo–N alloys with ultrafine-grained structures. Metall Mater Trans A. 2012;43(13):5243.

    Article  CAS  Google Scholar 

  24. Hagihara K, Nakano T, Sasaki K. Anomalous strengthening behavior of Co–Cr–Mo alloy single crystals for biomedical applications. Scr Mater. 2016;123:149.

    Article  CAS  Google Scholar 

  25. Mori M, Yamanaka K, Sato S, Tsubaki S, Satoh K, Imafuku M, Shobu T, Chiba A. Tuning strain-induced γ-to-ε martensitic transformation of biomedical Co–Cr–Mo alloys by introducing parent phase lattice defects. J Mech Behav Biomed Mater. 2019;90:523.

    Article  CAS  Google Scholar 

  26. Yamanaka K, Mori M, Sato S, Chiba A. Stacking-fault strengthening of biomedical Co–Cr–Mo alloy via multipass thermomechanical processing. Sci Rep. 2017;7(1):10808.

    Article  Google Scholar 

  27. Yamanaka K, Mori M, Koizumi Y, Chiba A. Local strain evolution due to athermal γ→ε martensitic transformation in biomedical CoCrMo alloys. J Mech Behav Biomed Mater. 2014;32:52.

    Article  CAS  Google Scholar 

  28. Putaux JL, Chevalier JP. HREM study of self accommodated thermal ε-martensite in an Fe–Mn–Si–Cr–Ni shape memory alloy. Acta Mater. 1996;44(4):1701.

    Article  CAS  Google Scholar 

  29. Rajan K. Phase transformations in a wrought Co–Cr–Mo–C alloy. Metall Trans A. 1982;13(7):1161.

    Article  CAS  Google Scholar 

  30. Lee BS, Matsumoto H, Chiba A. Fractures in tensile deformation of biomedical Co–Cr–Mo–N alloys. Mater Lett. 2011;65(5):843.

    Article  CAS  Google Scholar 

  31. Lee BS, Koizumi Y, Matsumoto H, Chiba A. Collective behavior of strain-induced martensitic transformation (SIMT) in biomedical Co–Cr–Mo–N alloy polycrystal: an ex situ electron backscattering diffraction study. Mater Sci Eng A. 2014;611:263.

    Article  CAS  Google Scholar 

  32. Favre J, Koizumi Y, Chiba A, Fabregue D, Maire E. Deformation behavior and dynamic recrystallization of biomedical Co–Cr–W–Ni (L-605) alloy. Metall Mater Trans A. 2003;44(6):2819.

    Article  Google Scholar 

  33. Koizumi Y, Suzuki S, Yamanaka K, Lee BS, Sato Y, Li YP, Kurosu S, Matsumoto H, Chiba A. Strain-induced martensitic transformation near twin boundaries in a biomedical Co–Cr–Mo alloy with negative stacking fault energy. Acta Mater. 2013;61(5):1648.

    Article  CAS  Google Scholar 

  34. Wright SI, Larsen RJ. Extracting twins from orientation imaging microscopy scan data. J Microsc. 2002;205(3):245.

    Article  CAS  Google Scholar 

  35. Humbert M, Petit B, Bolle B, Gey N. Analysis of the γ–ɛ–α′ variant selection induced by 10% plastic deformation in 304 stainless steel at − 60 °C. Mater Sci Eng, A. 2007;454:508.

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Key R&D Program of China (No. 2017 YFA 0403804).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leng Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, ZY., Meng, L. & Chen, L. Strain-induced martensitic transformation in biomedical Co–Cr–W–Ni alloys. Rare Met. 39, 241–249 (2020). https://doi.org/10.1007/s12598-019-01364-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-019-01364-6

Keywords

Navigation