Skip to main content
Log in

Glass-forming ability and corrosion performance of Mn-doped Mg–Zn–Ca amorphous alloys for biomedical applications

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

In the present work, ribbon and 2-mm rod samples of Mg–Zn–Ca–Mn alloys were prepared by melt-spinning and copper mold injection methods, respectively. Effects of Mn doping on glass-forming ability and corrosion performance in simulated body fluid of Mg65Zn30Ca5 alloy were studied through X-ray diffraction, scanning electron microscopy, differential scanning calorimeter, and electrochemical and immersion tests. Results show that with the Mn addition increasing, all the ribbon samples are completely in amorphous state. However, the microstructure of 2-mm rod samples transfers from fully amorphous for the Mn-free alloy to almost polycrystalline state with precipitated Mg, Mn, and MgZn phases. Glass-forming ability of Mg65Zn30Ca5 alloy is decreased by Mn addition. Results of electrochemical and immersion tests demonstrate that the Mn-doped samples exhibit more negative corrosion potential and larger corrosion current density, suggesting that the corrosion resistance decreases with doping amount of Mn element increasing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hong D, Saha P, Chou DT, Lee B, Collins BE, Tan ZQ, Dong ZY, Kumta PN. In vitro degradation and cytotoxicity response of Mg–4%Zn–0.5%Zr (ZK40) alloy as a potential biodegradable material. Acta Biomater. 2013;9(10):8534.

    Article  Google Scholar 

  2. Staiger MP, Pietak AM, Huadmai J, Dias G. Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials. 2006;27(9):1728.

    Article  Google Scholar 

  3. Vormann J. Magnesium: nutrition and metabolism. Mol Aspects Med. 2003;24(1–3):27.

    Article  Google Scholar 

  4. Kraus T, Fischerauer SF, Hänzi AC, Uggowitzer PJ, Löffler JF, Weinberg AM. Magnesium alloys for temporary implants in osteosynthesis: in vivo studies of their degradation and interaction with bone. Acta Biomater. 2012;8(3):1230.

    Article  Google Scholar 

  5. Choi YI, Salman S, Kuroda K, Okido M. Improvement in corrosion characteristics of AZ31 Mg alloy by square pulse anodizing between transpassive and active regions. Corros Sci. 2012;63:5.

    Article  Google Scholar 

  6. Jamesh M, Kumar S, Narayanan TSNS. Corrosion behavior of commercially pure Mg and ZM21 Mg alloy in Ringer’s solution—long term evaluation by EIS. Corros Sci. 2011;53(2):645.

    Article  Google Scholar 

  7. Erbel R, Di MC, Bartunek J, Bonnier J, Bruyne BD, Eberli FR, Erne P, Haude M, Heublein B, Horrigan M, Ilsley C, Böse D, Koolen J, Lüscher TF, Weissman N, Waksman R. Temporary scaffolding of coronary arteries with bioabsorbable magnesium stents: a prospective, non-randomised multicentre trial. The Lancet. 2007;369(9576):1869.

    Article  Google Scholar 

  8. Witte F, Fischer J, Nellesen J, Crostack HA, Kaese V, Pisch A, Beckmann F, Windhagen H. In vitro and in vivo corrosion measurements of magnesium alloys. Biomaterials. 2006;27(7):1013.

    Article  Google Scholar 

  9. Li H, Peng Q, Li X, Han ZS, Fang DQ. Microstructures, mechanical and cytocompatibility of degradable Mg–Zn based orthopedic biomaterials. Mater Des. 2014;58:43.

    Article  Google Scholar 

  10. Yang Z, Yuan G, Zhang X, Mao L, Niu JL, Ding WJ. Comparison of biodegradable behaviors of AZ31 and Mg–Nd–Zn–Zr alloys in Hank’s physiological solution. Mater Sci Eng B. 2012;177(5):395.

    Article  Google Scholar 

  11. Zhang W, Li M, Chen Q, Hu WY, Zhang WM, Xin W. Effects of Sr and Sn on microstructure and corrosion resistance of Mg–Zr–Ca magnesium alloy for biomedical applications. Mater Des. 2012;39:379.

    Article  Google Scholar 

  12. Gu Y, Bandopadhyay S, Chen CF, Ning CY, Guo YJ. Long-term corrosion inhibition mechanism of microarc oxidation coated AZ31 Mg alloys for biomedical applications. Mater Des. 2013;46:66.

    Article  Google Scholar 

  13. Jiang WH, Jiang F, Green BA, Liu FX, Liaw PK. Electrochemical corrosion behavior of a Zr-based bulk-metallic glass. Appl Phys Lett. 2007;91(4):1177.

    Article  Google Scholar 

  14. Gu X, Zheng Y, Zhong S, Xi TF, Wang JQ, Wang WH. Corrosion of, and cellular responses to Mg–Zn–Ca bulk metallic glasses. Biomaterials. 2010;31(6):1093.

    Article  Google Scholar 

  15. Trumbo P, Yates AA, Schlicker S, Poos M. Dietary reference intakes: vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, nickel, silicon, vanadium and zinc. J Am Diet Assoc. 2001;101(3):294.

    Article  Google Scholar 

  16. Zberg B, Uggowitzer PJ, Löffler JF. MgZnCa glasses without clinically observable hydrogen evolution for biodegradable implants. Nat Mater. 2009;8(11):887.

    Article  Google Scholar 

  17. Ramya M, Sarwat SG, Udhayabanu V, Subramanian S, Raj B, Ravi KR. Role of partially amorphous structure and alloying elements on the corrosion behavior of Mg–Zn–Ca bulk metallic glass for biomedical applications. Mater Des. 2015;86:829.

    Article  Google Scholar 

  18. Li HF, Pang SJ, Liu Y, Liaw PK, Zhang T. In vitro investigation of Mg–Zn–Ca–Ag bulk metallic glasses for biomedical applications. J Non-Cryst Solids. 2015;427:134.

    Article  Google Scholar 

  19. Zhang E, Yin D, Xu L. Microstructure, mechanical and corrosion properties and biocompatibility of Mg–Zn–Mn alloys for biomedical application. Mater Sci Eng C. 2009;29(3):987.

    Article  Google Scholar 

  20. Xu L, Yu GE, Pan F. In vivo corrosion behavior of Mg–Mn–Zn alloy for bone implant application. J Biomed Mater Res A. 2007;83(3):70.

    Google Scholar 

  21. Kakubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials. 2006;27(15):2907.

    Article  Google Scholar 

  22. Song G. Control of biodegradation of biocompatable magnesium alloys. Corros Sci. 2007;49(4):1696.

    Article  Google Scholar 

  23. Wang J, Li Y, Huang S. Effects of Y on the microstructure, mechanical and bio-corrosion properties of Mg–Zn–Ca bulk metallic glass. J Mater Sci Technol. 2014;30(12):1255.

    Article  Google Scholar 

  24. Wang YS, Tan MJ, Pang JJ, Wang ZM, Jarfors AWE. In vitro corrosion behaviors of Mg67Zn28Ca5 alloy: from amorphous to crystalline. Mater Chem Phys. 2012;134(2–3):1079.

    Article  Google Scholar 

  25. Inoue A. Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 2000;48(1):279.

    Article  Google Scholar 

  26. Turnbull D. Under what conditions can a glass be formed? Contemp Phys. 1969;10(5):473.

    Article  Google Scholar 

  27. Lu ZP, Liu CT. A new glass-forming ability criterion for bulk metallic glasses. Acta Mater. 2002;50(13):3501.

    Article  Google Scholar 

  28. Zhang QS, Zhang HF, Deng YF, Ding BZ, Hu ZQ. Bulk metallic glass formation of Cu–Zr–Ti–Sn alloys. Scr Mater. 2003;49(4):273.

    Article  Google Scholar 

  29. Xie KF, Yao KF, Huang TY. A Ti-based bulk glassy alloy with high strength and good glass forming ability. Intermetallics. 2010;18(10):1837.

    Article  Google Scholar 

  30. Zhang ZY, Wu Y, Zhou J, Song WL, Cao D, Wang H, Liu XJ, Lu ZP. Effects of Sn addition on phase formation and mechanical properties of TiCu-based bulk metallic glass composites. Intermetallics. 2013;42(11):68.

    Article  Google Scholar 

  31. Li Z, Gu X, Lou S, Zheng YF. The development of binary Mg–Ca alloys for use as biodegradable materials within bone. Biomaterials. 2008;29(10):1329.

    Article  Google Scholar 

  32. Hofstetter J, Martinelli E, Pogatscher S, Schmutz P, Povoden-Karadeniz E, Weinberg AM, Uggowitzer PJ, Löffler JF. Influence of trace impurities on the in vitro and in vivo degradation of biodegradable Mg–5Zn–0.3Ca alloys. Acta Biomater. 2015;23:347.

    Article  Google Scholar 

  33. Li X, Liu X, Wu S, Yeung KWK, Zheng YF, Chu PK. Design of magnesium alloys with controllable degradation for biomedical implants: from bulk to surface. Acta Biomater. 2016;45:2.

    Article  Google Scholar 

  34. Wu GH, Gao HT, Ding WJ, Zhu YP. Study on mechanism of iron reduction in magnesium alloy melt. J Mater Sci. 2005;40(23):6175.

    Article  Google Scholar 

  35. Ahmad Z. Principles of Corrosion Engineering and Corrosion Control. Oxford: Butterworth-Heinemann; 2006. 20.

    Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Nos. 51201120 and 51401155), the Science & Technology Coordination & Innovation Project of Shaanxi Province (No. 2016KTZDGY-04-01) and the Key Laboratory Program Funded by Shaanxi Provincial Education Department (No. 17JS053).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Li Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, JL., Wan, Y., Ma, ZJ. et al. Glass-forming ability and corrosion performance of Mn-doped Mg–Zn–Ca amorphous alloys for biomedical applications. Rare Met. 37, 579–586 (2018). https://doi.org/10.1007/s12598-018-1032-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-018-1032-z

Keywords

Navigation