Skip to main content
Log in

Toughness and Strength Coordination in a Low-Alloy Zn–0.5 Mg Alloy via Extrusion and Post-Deformation Annealing

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Zn is considered one of the most attractive bioresorbable candidates for metal implants, because it does not exhibit the inherent limitations of Fe and Mg. To explore the coordination of the toughness and strength of Zn alloys via grain size, secondary phase, and texture modification, we designed a micro-alloyed binary Zn–0.5 Mg (wt%) alloy. The sample was processed through hot extrusion at 220 °C with an extrusion ratio of 25:1 and subjected to rapid heat treatment at varying temperatures. Interestingly, the ductility of the low-temperature annealed alloys increased without exhibiting strength loss, in contrast to the known behavior of most other metallic alloys. The mechanical properties were optimized in the sample by thermal deformation and 30 min annealing at 150 °C, exhibiting the following results: yield strength of 240.3 ± 4.3 MPa, ultimate tensile strength of 293.6 ± 3.8 MPa, and elongation to failure of 36.3 ± 4.5%. During the low-temperature annealing of extruded Zn–0.5 Mg rods, the fine Mg2Zn11 phase particles pinning effect and the recrystallization behavior inhibited grain coarsening. The prismatic <a> and pyramidal <c + a> slip systems were activated by a non-basal texture, which contributed to the enhanced toughness. The balance between strength and ductility was mainly attributed to a synergistic effect of grain refinement, unique texture modification, and secondary phases.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. G. Li, H. Yang, Y. Zheng, X.-H. Chen, J.-A. Yang, D. Zhu, L. Ruan, K. Takashima, Challenges in the use of zinc and its alloys as biodegradable metals: perspective from biomechanical compatibility. Acta Biomater. 97, 23–45 (2019)

    Article  CAS  Google Scholar 

  2. H. Guo, Hu. Jili, Z. Shen, Du. Dexiao, Y. Zheng, J. Peng, In vitro and in vivo studies of biodegradable Zn-Li-Mn alloy staples designed for gastrointestinal anastomosis. Acta Biomater. 121, 713–723 (2021)

    Article  CAS  Google Scholar 

  3. E. Mostaed, M. Sikora-Jasinska, A. Mostaed, S. Loffredo, A.G. Demir, B. Previtali, D. Mantovani, R. Beanland, M. Vedani, Novel Zn-based alloys for biodegradable stent applications: Design, development and in vitro degradation. J. Mech. Behav. Biomed. Mater. 60, 581–602 (2016)

    Article  CAS  Google Scholar 

  4. C. Iglesias, O.G. Bodelón, R. Montoya et al., Fracture bone healing and biodegradation of AZ31 implant in rats. Biomed. Mater. 10(2), 025008 (2015)

    Article  CAS  Google Scholar 

  5. K. Pieła, M. Wróbel, K. Sztwiertnia, M. Jaskowski, J. Kawałko, M. Bieda, M. Kiper, A. Jarzębsk, Zinc subjected to plastic deformation by complex loading and conventional extrusion: comparison of the microstructure and mechanical properties. Mater. Des. 117, 111–120 (2017)

    Article  Google Scholar 

  6. S. Liu, D. Kent, N. Doan, M. Dargusch, G. Wang, Effects of deformation twinning on the mechanical properties of biodegradable Zn-Mg alloys. Bioactive Mater. 4, 8–16 (2019)

    Article  Google Scholar 

  7. L. Ye, He. Huang, C. Sun, X. Zhuo, Q. Dong, H. Liu, Ju. Jia, F. Xue, J. Bai, J. Jiang, Effect of grain size and volume fraction of eutectic structure on mechanical properties and corrosion behavior of as-cast Zn–Mg binary alloys. J. Market. Res. 16, 1673–1685 (2022)

    CAS  Google Scholar 

  8. Yu. Yilong Dai, H.L. Zhang, H. Fang, D. Li, Xu. Xuemei, Y. Yan, L. Chen, Lu. Yujiao, Yu. Kun, Mechanical strengthening mechanism of Zn-Li alloy and its mini tube as potential absorbable stent material. Mater. Lett. 235, 220–223 (2019)

    Article  Google Scholar 

  9. H.F. Li, X.H. Xie, Y.F. Zheng et al., Development of biodegradable Zn-1X binary alloys with nutrient alloying elements Mg, Ca and Sr. Sci. Rep. 5, 10719 (2015)

    Google Scholar 

  10. Bo. Jia, Yu. Hongtao Yang, Z.Z. Han, Qu. Xinhua, Y. Zhuang, Wu. Qiang, Y. Zheng, K. Dai, In vitro and in vivo studies of Zn-Mn biodegradable metals designed for orthopedic applications. Acta Biomater. 108, 358–372 (2020)

    Article  CAS  Google Scholar 

  11. X. Tong, D. Zhang, J. Lin, Y. Dai, Y. Luan, Q. Sun, Z. Shi, K. Wang, Y. Gao, J. Lin, Y. Li, M. Dargusch, C. Wen, Development of biodegradable Zn–1Mg–0.1RE (RE = Er, Dy, and Ho) alloys for biomedical applications. Acta Biomater. 117, 384–399 (2020)

    Article  CAS  Google Scholar 

  12. S. Huang, L. Wang, Y. Zheng, L. Qiao, Y. Yan, In vitro degradation behavior of novel Zn–Cu–Li alloys: roles of alloy composition and rolling processing. Mater Des 212, 110288 (2021)

    Article  CAS  Google Scholar 

  13. X. Wang, Y. Ma, B. Meng, M. Wan, Effect of equal-channel angular pressing on microstructural evolution, mechanical property and biodegradability of an ultrafine-grained zinc alloy. Mater. Sci. Eng. A 824, 141857 (2021)

    Article  CAS  Google Scholar 

  14. H. Zhang, Y. Ding, R. Li, Y. Shen, J. Lei, Achieving exceptional improvement of yield strength in Mg–Zn–Ca alloy wire by nanoparticles induced by extreme plastic deformation. Mater. Sci. Eng. A 853, 143733 (2022)

    Article  CAS  Google Scholar 

  15. J. Venezuela, M.S. Dargusch, The influence of alloying and fabrication techniques on the mechanical properties, biodegradability and biocompatibility of zinc: a comprehensive review. Acta Biomater. 87, 1–40 (2019)

    Article  CAS  Google Scholar 

  16. L. Ye, C. Sun, X. Zhuo, H. Liu, J. Jia, F. Xue, J. Bai, J. Jiang, Y. Xin, Evolution of grain size and texture of Zn-0.5Cu ECAP alloy during annealing at 200 °C and its impact on mechanical properties. J. Alloys Compd. 919, 165871 (2022)

    Article  CAS  Google Scholar 

  17. J.N. Li, P. Cao, X.N. Zhang et al., In vitro degradation and cell attachment of a PLGA coated biodegradable Mg–6Zn based alloy. J. Mater. Sci. 45, 6038–6045 (2010)

    Article  CAS  Google Scholar 

  18. H. Zhou, B. Liang, H. Jiang, Z. Deng, Yu. Kexiao, Magnesium-based biomaterials as emerging agents for bone repair and regeneration: from mechanism to application. J. Magn. Alloys 9(3), 779–804 (2021)

    Article  CAS  Google Scholar 

  19. Su. Yingchao, I. Cockerill, Y. Wang, Y.-X. Qin, L. Chang, Y. Zheng, D. Zhu, Zinc-based biomaterials for regeneration and therapy. Trends Biotechnol. 37(4), 428–441 (2019)

    Article  Google Scholar 

  20. H. Yang, Bo. Jia, Z. Zhang, Qu. Xinhua, G. Li, W. Lin, D. Zhu, K. Dai, Y. Zheng, Alloying design of biodegradable zinc as promising bone implants for load-bearing applications. Nat. Commun. 11(1), 1–16 (2020)

    CAS  Google Scholar 

  21. N. Yang, J. Venezuela, S. Almathami, M. Dargusch, Zinc-nutrient element based alloys for absorbable wound closure devices fabrication: current status, challenges, and future prospects. Biomaterials 280, 121301 (2022)

    Article  CAS  Google Scholar 

  22. J. Kubásek, I. Pospíšilová, D. Vojtěch, E. Jablonska, T. Ruml, Structural, mechanical and cytotoxicity characterization of as-cast biodegradable Zn-xMg (x = 0.8–8.3%) alloys. Mater. Tehnol. 48(5), 623–629 (2014)

    Google Scholar 

  23. C. García-Mintegui, L.C. Córdoba, J. Buxadera-Palomero, A. Marquina, E. Jiménez-Piqué, M.-P. Ginebra, J.L. Cortina, M. Pegueroles, Zn-Mg and Zn-Cu alloys for stenting applications: from nanoscale mechanical characterization to in vitro degradation and biocompatibility. Bioactive Mater. 6(12), 4430–4446 (2021)

    Article  Google Scholar 

  24. J. Kubásek, D. Vojtěch, I. Pospíšilová et al., Microstructure and mechanical properties of the micrograined hypoeutectic Zn–Mg alloy. Int. J. Miner. Metall. Mater. 23(10), 1167–1176 (2016)

    Article  Google Scholar 

  25. S. Lin, X. Ran, X. Yan et al., Systematical evolution on a Zn–Mg alloy potentially developed for biodegradable cardiovascular stents. J. Mater. Sci. Mater. Med. 30(11), 1–12 (2019)

    Article  CAS  Google Scholar 

  26. J. Čapek, J. Kubásek, J. Pinc, J. Maňák, O. Molnárová, J. Drahokoupil, M. Čavojský, ZnMg0.8Ca0.2 (wt%) biodegradable alloy—the influence of thermal treatment and extrusion on microstructural and mechanical characteristics. Mater Charact 162, 110230 (2020)

    Article  Google Scholar 

  27. M.S. Ardakani, E. Mostaed, M. Sikora-Jasinska, S.L. Kampe, J.W. Drelich, The effects of alloying with Cu and Mn and thermal treatments on the mechanical instability of Zn-0.05Mg alloy. Mater. Sci. Eng. A 770, 138529 (2020)

    Article  CAS  Google Scholar 

  28. H. Yan, X.H. Shao, H.P. Li, R.S. Chen, H.Z. Cui, En-Hou Han, Synergization of ductility and yield strength in a dilute quaternary Mg-Zn-Gd-Ca alloy through texture modification and Guinier-Preston zone. Scr. Mater. 207, 114257 (2022)

    Article  CAS  Google Scholar 

  29. R. Zhao, Q. Ma, L. Zhang, J. Zhang, Xu. Chunxiang, Wu. Yuan, J. Zhang, Revealing the influence of Zr micro-alloying and hot extrusion on a novel high ductility Zn–1Mg alloy. Mater. Sci. Eng. A 801, 140395 (2021)

    Article  CAS  Google Scholar 

  30. R. Li, Y. Ding, H. Zhang, J. Lei, Y. Shen, Effective strengthening and toughening in Zn–1Mg alloy with bimodal grain structure achieved by conventional extrusion. Mater. Sci. Eng. A 854, 143850 (2022)

    Article  CAS  Google Scholar 

  31. H. Okamoto, Supplemental literature review of binary phase diagrams: Cs-In, Cs-K, Cs-Rb, Eu-In, Ho-Mn, K-Rb, Li-Mg, Mg-Nd, Mg-Zn, Mn-Sm, O-Sb, and Si-Sr. J. Phase Equilib. Diffus. 34(3), 251–263 (2013)

    Article  CAS  Google Scholar 

  32. J. Jiang, H. Huang, J. Niu et al., Fabrication and characterization of biodegradable Zn-Cu-Mn alloy micro-tubes and vascular stents: Microstructure, texture, mechanical properties and corrosion behavior. Acta Biomater. 151, 647–660 (2022)

    Article  CAS  Google Scholar 

  33. J.D. Robson, D.T. Henry, B. Davis, Particle effects on recrystallization in magnesium–manganese alloys: Particle-stimulated nucleation. Acta Mater. 57(9), 2739–2747 (2009)

    Article  CAS  Google Scholar 

  34. Z. Yan, Z. Zhang, X. Li, Xu. Jian, Q. Wang, G. Zhang, J. Zheng, H. Fan, Xu. Kaihua, J. Zhu, Y. Xue, A novel severe plastic deformation method and its effect on microstructure, texture and mechanical properties of Mg-Gd-Y-Zn-Zr alloy. J. Alloys Compd. 822, 153698 (2020)

    Article  CAS  Google Scholar 

  35. D. Lou, L. Wang, Y. Ren, H. Li, G. Qin, Textural evolution and improved ductility in Zn-0.2Mg-0.8Mn (wt%) alloys at different extrusion temperatures. J. Alloys Compd. 860, 158530 (2021)

    Article  CAS  Google Scholar 

  36. L. Wang, Y. He, H. Zhao, H. Xie, S. Li, Y. Ren, G. Qin, Effect of cumulative strain on the microstructural and mechanical properties of Zn-002 wt%Mg alloy wires during room-temperature drawing process. J. Alloys Compd. 740(9), 949–957 (2018)

    Article  CAS  Google Scholar 

  37. Y.N. Wang, J.C. Huang, Texture analysis in hexagonal materials. Mater. Chem. Phys. 81(1), 11–26 (2003)

    Article  CAS  Google Scholar 

  38. L.B. Tong, J.H. Chu, W.T. Sun, Z.H. Jiang, D.N. Zou et al., Development of a high-strength Mg alloy with superior ductility through a unique texture modification from equal channel angular pressing. J. Magn. Alloys 9, 1007–1018 (2021)

    Article  CAS  Google Scholar 

  39. C. Xiao, L. Wang, Y. Ren, S. Sun, E. Zhang, C. Yan et al., Indirectly extruded biodegradable Zn-0.05wt%Mg alloy with improved strength and ductility: in vitro and in vivo studies. J. Mater. Sci. Technol. 34(9), 1618–1627 (2018)

    Article  CAS  Google Scholar 

  40. L.Q. Wang, Y.P. Ren, S.N. Sun et al., Microstructure, mechanical properties and fracture behavior of as-extruded Zn–Mg binary alloys. Acta Metall. Sin. (Engl. Lett.) 30, 931–940 (2017)

    Article  CAS  Google Scholar 

  41. H. Gong, K. Wang, R. Strich, J.G. Zhou, In vitro biodegradation behavior, mechanical properties, and cytotoxicity of biodegradable Zn-Mg alloy. J. Biomed. Mater. Res. B Appl. Biomater. 103(8), 1632–1640 (2015)

    Article  CAS  Google Scholar 

  42. S. Sun, Y. Ren, L. Wang, Bo. Yang, H. Li, G. Qin, Abnormal effect of Mn addition on the mechanical properties of as-extruded Zn alloys. Mater. Sci. Eng. A 701, 129–133 (2017)

    Article  CAS  Google Scholar 

  43. Z.-Z. Shi, Yu. Jing, X.-F. Liu, Microalloyed Zn-Mn alloys: From extremely brittle to extraordinarily ductile at room temperature. Mater. Des. 144, 343–352 (2018)

    Article  CAS  Google Scholar 

  44. W. Bednarczyk, M. Wątroba, J. Kawałko, P. Bała, Can zinc alloys be strengthened by grain refinement? A critical evaluation of the processing of low-alloyed binary zinc alloys using ECAP. Mater. Sci. Eng. A 748, 357–366 (2019)

    Article  CAS  Google Scholar 

  45. Z. Tang, J. Niu, H. Huang, H. Zhang, J. Pei, Ou. Jingmin, G. Yuan, Potential biodegradable Zn-Cu binary alloys developed for cardiovascular implant applications. J. Mech. Behav. Biomed. Mater. 72, 182–191 (2017)

    Article  CAS  Google Scholar 

  46. W. Zhang, P. Li, G. Shen, X. Mo, C. Zhou, D. Alexander, F. Rupp, J. Geis-Gerstorfer, H. Zhang, G. Wan, Appropriately adapted properties of hot-extruded Zn–05Cu–xFe alloys aimed for biodegradable guided bone regeneration membrane application. Bioactive Mater. 6(4), 975–989 (2021)

    Article  CAS  Google Scholar 

  47. M. Sikora-Jasinska, E. Mostaed, A. Mostaed, R. Beanland, D. Mantovani, M. Vedani, Fabrication, mechanical properties and in vitro degradation behavior of newly developed ZnAg alloys for degradable implant applications. Mater. Sci. Eng. C 77, 1170–1181 (2017)

    Article  CAS  Google Scholar 

  48. D. Zhu, I. Cockerill, Su. Yingchao et al., Mechanical strength, biodegradation, and in vitro and in vivo biocompatibility of Zn biomaterials. ACS Appl. Mater. Interfaces 11(7), 6809–6819 (2019)

    Article  CAS  Google Scholar 

  49. C. Liu, Y. Chen, C. Zhang, D. Chen, G. Cui, Enhanced strength and plasticity in a novel 55Si2MnMoV spring steel via austempering. Mater. Sci. Eng. A 825, 141887 (2021)

    Article  CAS  Google Scholar 

  50. E. Mostaed, M. Sikora-Jasinska, J.W. Drelich, M. Vedani, Zinc-based alloys for degradable vascular stent applications. Acta Biomater. 71, 1–23 (2018)

    Article  CAS  Google Scholar 

  51. A. Bahrami, A.J. den Bakker, A. Miroux, J. Sietsma, in Light Metals 2013, ed. by B.A. Sadler (Springer, Cham, 2013), pp. 347–350

    Google Scholar 

  52. M. Wątroba, W. Bednarczyk, J. Kawałko, P. Bała, Fine-tuning of mechanical properties in a Zn–Ag–Mg alloy via cold plastic deformation process and post-deformation annealing. Bioactive Mater. 6(10), 3424–3436 (2021)

    Article  Google Scholar 

  53. J. Hirsch, T. Al-Samman, Superior light metals by texture engineering: optimized aluminum and magnesium alloys for automotive applications. Acta Mater. 61(3), 818–843 (2013)

    Article  CAS  Google Scholar 

  54. J. Koike, T. Kobayashi, T. Mukai, H. Watanabe, M. Suzuki, K. Maruyama, K. Higashi, The activity of non-basal slip systems and dynamic recovery at room temperature in fine-grained AZ31B magnesium alloys. Acta Mater. 51(7), 2055–2065 (2003)

    Article  CAS  Google Scholar 

  55. X. Nie, J. Ni, S. Dong et al., Preferential grain growth and textural evolution of AZ31B Mg alloy during annealing after isothermal compression at 400 °C. Mater. Charact. 169, 110566 (2020)

    Article  CAS  Google Scholar 

  56. Z. Liu, R. Li, R. Jiang, X. Li, M. Zhang, Effects of Al addition on the structure and mechanical properties of Zn alloys. J. Alloys Compd. 687(5), 885–892 (2016)

    Article  CAS  Google Scholar 

  57. X. Zhuo, Wu. Yuna, Ju. Jia, H. Liu, J. Jiang, Hu. Zhichao, J. Bai, F. Xue, Recent progress of novel biodegradable zinc alloys: from the perspective of strengthening and toughening. J. Market. Res. 17, 244–269 (2022)

    CAS  Google Scholar 

  58. Z. Liu, D. Qiu et al., Effect of grain refinement on tensile properties of cast Zinc alloys. Metall. and Mater. Trans. A 47(2), 830–841 (2016)

    Article  CAS  Google Scholar 

  59. Z.C. Cordero, B.E. Knight, C.A. Schuh, Six decades of the Hall-Petch effect-a survey of grain-size strengthening studies on pure metals. Int. Mater. Rev. 61, 495–512 (2016)

    Article  CAS  Google Scholar 

  60. S. Luo, N. Wang, Y. Wang, J. Chen, H. Qin, S. Kong, T. Bai, L. Wenjie, L. Xiao, X. Ma, X. Yang, J. Zhang, Texture, microstructure and mechanical properties of an extruded Mg-10Gd-1Zn-0.4Zr alloy: Role of microstructure prior to extrusion. Mater. Sci. Eng. A 849, 143476 (2022)

    Article  CAS  Google Scholar 

  61. R.G. Li, H.R. Li, D.Y. Zhao et al., High strength commercial AZ91D alloy with a uniformly fine-grained structure processed by conventional extrusion. Mater. Sci. Eng. A 780, 139193 (2020)

    Article  CAS  Google Scholar 

  62. Di. Liu, Z. Liu, E. Wang, Effect of rolling reduction on microstructure, texture, mechanical properties and mechanical anisotropy of AZ31 magnesium alloys. Mater. Sci. Eng. A 612, 208–213 (2014)

    Article  CAS  Google Scholar 

  63. D. Zhao, X. Ma, A. Srivastava, G. Turner, I. Karaman, K.Y. Xie, Significant disparity of non-basal dislocation activities in hot-rolled highly-textured Mg and Mg-3Al-1Zn alloy under tension. Acta Mater. 207, 116691 (2021)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank to the financial support from Hongliu first-class discipline construction plan of Lanzhou University of Technology. This study was also supported by Outstanding Postgraduate Innovation Star Project of Gansu Provincial Department of Education (Project No. 2022CXZX-389).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yutian Ding.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, R., Ding, Y. & Zhang, H. Toughness and Strength Coordination in a Low-Alloy Zn–0.5 Mg Alloy via Extrusion and Post-Deformation Annealing. Met. Mater. Int. 29, 2807–2825 (2023). https://doi.org/10.1007/s12540-023-01420-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-023-01420-y

Keywords

Navigation