Skip to main content
Log in

Solder paste metamorphism

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Solder paste quality can be improved from microstructure and surface status of the solder powder. In this work, the micro-morphology of solder paste was observed and the particle surface condition was analyzed. Also, the conditions of corrosion and the corrosion products in different organic acid groups (activators) were analyzed. The result shows that the SnO passive film on the solder powder surface reacts with the COO– in the active agent of the solder paste. This reaction led the passivation layer to be peeled off. It also caused the change in solder powders’ physical and chemical properties and made the metal boundary to be cold-welded. This is the root cause of solder paste exsiccation and deterioration. The study on the details shows that to obtain high-quality solder paste, one of the key methods is using the solder powder with ideal passivation shell structure and defect-free surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Tummala RR, Rymaszewski EJ, Klopfenstein AG. Microelectronics Packaging Handbook. 2nd ed. New York: International Thompson; 1997. 65.

    Book  Google Scholar 

  2. Nuty TA, Ekere NN. Monitoring the effects of storage on the rheological properties of solder paste. J Mater Sci Mater Electron. 2000;11:433.

    Article  Google Scholar 

  3. Xu XY. Investigation on Viscosity and Stability of Lead-Free Solder Paste. Nanjing: Southeast University; 2015. 3.

    Google Scholar 

  4. Chen LC, Zhao ZH, Wang RJ. Effect of solder powder on the stability of solder paste. Rare Met. 2009;28(10):414.

    Google Scholar 

  5. Han S, Zhao MQ, Song N. Optimization on storage stability of Sn0.3Ag0.7Cu solder paste. Electron Compon Mater. 2016;35(2):60.

    Google Scholar 

  6. Yu XY, Zhao MQ, Chen XD, Yang YJ. Effect of solvent on storage stability of SnAgCu solder paste. Electron Compon Mater. 2014;33(10):63.

    CAS  Google Scholar 

  7. Jin S, Xu J, He HJ, Lu CT. Oxidation characteristics of SnAgCu lead-free solder powder. Powder Metall Ind. 2013;23(2):17.

    CAS  Google Scholar 

  8. Fouzder T, Gain AK, Chan DK. Microstructure, wetting characteristics and hardness of tin-bismuth-silver (Sn–Bi–Ag) solders on silver (Ag)-surface finished copper (Cu) substrates. J Mater Sci Mater Electron. 2017;28(22):16921.

    Article  CAS  Google Scholar 

  9. Kotadia HR, Howes PD, Mannan SH. A review: on the development of low melting temperature Pb-free solders. Microelectron Reliab. 2014;54:1253.

    Article  CAS  Google Scholar 

  10. Gain AK, Zhang L, Chan YC. Microstructure, elastic modulus and shear strength of alumina (Al2O3) nanoparticles-doped tin-silver-copper (Sn–Ag–Cu) solders on copper (Cu) and gold/nickel (Au/Ni)-plated Cu substrates. J Mater Sci Mater Electron. 2015;26(9):7039.

    Article  CAS  Google Scholar 

  11. Gain AK, Chan YC. The influence of a small amount of Al and Ni nano-particles on the microstructure, kinetics and hardness of Sn–Ag–Cu solder on OSP-Cu pads. Intermetallics. 2012;29:48.

    Article  CAS  Google Scholar 

  12. Gain AK, Chan YC, Yung WKC. Microstructure, thermal analysis and hardness of a Sn–Ag–Cu-1 wt% nano-TiO2 composite solder on flexible ball grid array substrates. Microelectron Reliab. 2011;51:975.

    Article  CAS  Google Scholar 

  13. Gong M. Metal Corrosion Theory and Corrosion Control. Beijing: Chemical Industry Press; 2009. 711.

    Google Scholar 

  14. Landolt D. Corrosion and Surface Treatment. Swiss: Encyclopedia of Life Support Systems (EOLSS); 2016.

    Google Scholar 

  15. Landolt Dieter. Corrosion and Surface Chemistry of Metals. Swiss: EPFL Press; 2007. 15.

    Book  Google Scholar 

  16. Xie DJ, Chan YC, Lai JKL. An experimental approach to pore-free reflow soldering. IEEE Trans Compon Packag Manuf Technol. 1996;19(1):148.

    Article  CAS  Google Scholar 

  17. Tian Y, Chan YC, Lai JK, Pak ST. The effect of solder paste viscosity on porosity and mechanical properties of surface mount solder joints. IEEE Trans Compon Packag Manuf Technol Part B. 1997;20(2):146.

    Article  CAS  Google Scholar 

  18. Rabiatull S, Idris A, Zuleikha S, Malek ZAA. Wettability study of lead free solder paste and its effect towards multiple reflow. In: The 3rd International Conference on Mechanical Engineering Research (ICMER 2015). Malaysia: Kuantan; 2016. 38.

  19. Baduch Dosten, Minogur Gerad. Fundamentals of Solder Paste Technology. Glob SMT Packag. 2007;12:14.

    Google Scholar 

  20. Turbini LJ, Smith BA, Brokaw J, Williams J, Gamalski J. The effect of solder paste residues on RF signal integrity. J Electron Mater. 2000;29(10):1164.

    Article  CAS  Google Scholar 

  21. Tuominen A, Nummenpaa P, Liukkonen T. The effect of lead-free solder paste on component placement accuracy and self-alignment during reflow. Solder Surf Mt Technol. 2004;16(1):44.

    Article  Google Scholar 

  22. Song F, Lee SWR. Corrosion of Sn–Ag–Cu lead-free solders and the corresponding effects on board level solder joint reliability. In: Electronic Components and Technology Conference. Nice; 2006. 891.

  23. Mori M, Miura K, Sasaki T, Ohtsuka T. Corrosion of tin alloys in sulfuric and nitric acids. Corros Sci. 2002;44:887.

    Article  CAS  Google Scholar 

  24. Du B, Lu YP, Lei YP, Yang YL, Yang HM. Study of a new flux for SnAgCu solder paste with low silver content. Vac Electron. 2011;4:27.

    Google Scholar 

  25. Iwasaki T, Kim JH, Mizuhashi S, Munetake S. Encapsulation of Lead-free Sn/Zn/Bi solder alloy particles by coating with wax powder for improving oxidation resistance. J Electron Mater. 2005;34(5):647.

    Article  CAS  Google Scholar 

  26. Bai R, Zhao MQ, Fan H. Study on ethylene glycol ether free flux and solder paste. Electron Process Technol. 2012;33(2):71.

    Google Scholar 

  27. Hwang JS. Solder Paste in Electronics Packaging: Technology and Applications in Surface Mount, Hybrid Circuits, and Component Assembly. Germany: Springer; 1988. 283.

    Google Scholar 

  28. Yang XY, Al-Duri B. Kinetic modeling of liquid-phase adsorption of reactive dyes on activated carbon. J Colloid Interface Sci. 2005;28(7):25.

    Article  CAS  Google Scholar 

  29. Zhou YX, Lei YP, Li K, Wang Y. Technic adaptability of lead-free solder paste. Electron Process Technol. 2009;30(4):37.

    CAS  Google Scholar 

  30. Huang HZ, Wei XQ, Tan DQ, Zhou L. Effects of phosphorus addition on the properties of Sn–9Zn lead-free solder alloy. Int J Miner Metall Mater. 2013;20(6):563.

    Article  CAS  Google Scholar 

  31. Mhd Noor EE, Ogundipe AS. Effect of fluxes on Sn–Zn–Bi solder alloys on copper substrate. Solder Surf Mt Technol. 2017;5(14):12.

    Google Scholar 

  32. Amalu EH, Lau WK, Ekere NN. A study of SnAgCu solder paste transfer efficiency and effects of optimal reflow profile on solder deposits. Microelectron Eng. 2011;88(7):1610.

    Article  CAS  Google Scholar 

  33. Yu CY, Wang KJ, Duh JG. Interfacial reaction of Sn and Cu–xZn substrates after reflow and thermal aging. J Electron Mater. 2010;39(2):230.

    Article  CAS  Google Scholar 

  34. Hu CS, Wang FH, Wu W. Review of progress in thermal barrier coating. Corros Sci Prot Technol. 2000;12(3):160.

    CAS  Google Scholar 

  35. Kim SH, Choi Y, Kim YS, Paik KW. Effect of flux activators on the solder wettability of solder anisotropic conductive films. IEEE Trans Compon Packag Manuf Technol. 2015;5(1):3.

    Article  CAS  Google Scholar 

  36. Qin JH, Liu BQ, Gu LD, Li JM. Research of influencing factors on solder paste viscosity. Electron Compon Mater. 2011;30(7):40.

    Google Scholar 

  37. Xue J, Zhao MQ, Fan H, Zhan JF. Research on the solvents optimization of SnAgCu lead-free solder paste. Electron Compon Mater. 2011;30(2):36.

    CAS  Google Scholar 

  38. Berenguer R, Quijada C, Morallón E. Electrochemical characterization of SnO2 electrodes doped with Ru and Pt. Electrochim Acta. 2009;54(14):5230.

    Article  CAS  Google Scholar 

  39. Idris SRA, Farihan N, Kahar H. Effect of flux onto intermetallic compound formation and growth. In: The 3rd International Conference on Mechanical Engineering Research (ICMER 2015). Malaysia: Kuantan; 2016. 34.

Download references

Acknowledgements

This work was financially supported by National Key R&D Program of China (No. 2017YFB0305700).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fu-Wen Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, FW., He, HJ., Wang, ZG. et al. Solder paste metamorphism. Rare Met. 40, 1329–1336 (2021). https://doi.org/10.1007/s12598-019-01356-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-019-01356-6

Keywords

Navigation