Skip to main content
Log in

Electrochemical properties of high-loading sulfur–carbon materials prepared by in situ generation method

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

A high sulfur content sulfur–carbon composite was synthesized via in situ generation method in aqueous solution. When the sulfur loading is up to 90%, the electrode still exhibits good cycling performance with a reversible capacity of about 623 mAh·g−1 after 100 cycles. To further commercialize the Li–S battery, understanding the capacity degradation mechanism is very essential, especially with a high sulfur loading electrode. To achieve this goal, the electrochemical performance of the high sulfur loading electrode was studied, and the structure change of the electrode after cycling was also examined by ex situ scanning electron microscopy (SEM) and other techniques. The result shows that the Li2S2 and Li2S inhomogeneous precipitation contributes to the majority capacity fading of the high sulfur loading Li–S cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Manthiram A, Fu Y, Su YS. Challenges and prospects of lithium–sulfur batteries. Acc Chem Res. 2012;46(5):1125.

    Article  Google Scholar 

  2. Li Z, Huang YM, Yuan LX, Hao ZX, Huang YH. Status and prospects in sulfur–carbon composites as cathode materials for rechargeable lithium–sulfur batteries. Carbon. 2015;92:41.

    Article  CAS  Google Scholar 

  3. Ma W, Xu Q. Lithium cobaltate: a novel host material enables high-rate and stable lithium–sulfur batteries. Rare Met. 2018;36(11):929.

    Article  Google Scholar 

  4. Huang Q, Gao ZS, Yang R, Fang YY, Shi JM. Survey and research process on electrode materials of lithium–sulfur batteries. Chin J Rare Met. 2018;42(7):772.

    Google Scholar 

  5. Ji X, Lee KT, Nazar LF. A highly ordered nanostructured carbon sulfur cathode for lithium sulfur batteries. Nat Mater. 2009;8(6):500.

    Article  CAS  Google Scholar 

  6. She ZW, Li WY, Cha JJ, Zheng GY, Yang Y, McDowell MT, Hsu PC, Cui Y. Sulphur–TiO2 yolk–shell nanoarchitecture with internal void space for long-cycle lithium–sulfur batteries. Nat Commun. 2012;4(4):1331.

    Google Scholar 

  7. Hesham AS, Ganguli B, Rao CV, Arava LM. Electrocatalytic polysulfide traps for controlling redox shuttle process of Li–S batteries. J Am Chem Soc. 2015;137(36):11542.

    Article  Google Scholar 

  8. Chen JZ, Wu DX, Walter E, Engelhard M, Bhattacharya P, Pan H, Shao Y, Gao F, Xiao J, Liu J. Molecular-confinement of polysulfides within mesoscale electrodes for the practical application of lithium sulfur batteries. Nano Energy. 2015;13:267.

    Article  CAS  Google Scholar 

  9. Chung SH, Manthiram A. A polyethylene glycol-supported microporous carbon coating as a polysulfide trap for utilizing pure sulfur cathodes in lithium–sulfur batteries. Adv Mater. 2014;26(43):7352.

    Article  CAS  Google Scholar 

  10. Jayaprakash N, Shen J, Moganty SS, Corona A, Archer LA. Porous hollow carbon@sulfur composites for high-power lithium–sulfur batteries. Angew Chem Int Ed. 2011;50(26):5904.

    Article  CAS  Google Scholar 

  11. Hua W, Yang Z, Nie H, Li Z, Yang J, Guo Z, Ruan C, Chen X, Huang S. Polysulfide-scission reagents for the suppression of the shuttle effect in lithium–sulfur batteries. ACS Nano. 2017;11(2):2209.

    Article  CAS  Google Scholar 

  12. Cañas NA, Wolf S, Wagner N, Friedrich KA. In-situ X-ray diffraction studies of lithium–sulfur batteries. J Power Sources. 2013;226(6):313.

    Article  Google Scholar 

  13. Walus S, Barchasz C, Colin JF, Martin JF, Elkaim E, Lepretre JC, Alloin F. New insight into the working mechanism of lithium–sulfur batteries: in situ and operando X-ray diffraction characterization. Chem Commun. 2013;49(72):7899.

    Article  CAS  Google Scholar 

  14. Nelson J, Misra S, Yang Y, Jackson A, Liu Y, Wang H, Dai H, Andrew JC, Cui Y, Toney MF. In operando X-ray diffraction and transmission X-ray microscopy of lithium sulfur batteries. J Am Chem Soc. 2012;134(14):6337.

    Article  CAS  Google Scholar 

  15. Chung SH, Lai KY, Manthiram A. A facile, low-cost hot-pressing process for fabricating lithium–sulfur cells with stable dynamic and static electrochemistry. Adv Mater. 2018;30(46):1805571.

    Article  Google Scholar 

  16. Lu D, Li Q, Liu J, Zheng J, Wang Y, Ferrara S, Xiao J, Zhang JG, Liu J. Enabling high energy density cathode for lithium–sulfur batteries. ACS Appl Mater Interfaces. 2018;10(27):23094.

    Article  CAS  Google Scholar 

  17. Chung SH, Manthiram A. Designing lithium–sulfur cells with practically necessary parameters. Joule. 2018;2(4):710.

    Article  CAS  Google Scholar 

  18. Ji X, Nazar LF. Advances in Li–S batteries. J Mater Chem. 2010;20(44):9821.

    Article  CAS  Google Scholar 

  19. Zhang B, Qin X, Li GR, Gao XP. Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres. Energy Environ Sci. 2010;3(10):1531.

    Article  CAS  Google Scholar 

  20. Wang J, Yang J, Wan C, Du K, Xie J, Xu N. Sulfur composite cathode materials for rechargeable lithium batteries. Adv Func Mater. 2003;13(6):487.

    Article  CAS  Google Scholar 

  21. Wang J, Chew SY, Zhao ZW, Ashraf S, Wexler D, Chen J, Ng SH, Chou SL, Liu HK. Sulfur–mesoporous carbon composites in conjunction with a novel ionic liquid electrolyte for lithium rechargeable batteries. Carbon. 2008;46(2):229.

    Article  CAS  Google Scholar 

  22. Lai C, Gao XP, Zhang B, Yan TY, Zhou Z. Synthesis and electrochemical performance of sulfur/highly porous carbon composites. J Phys Chem C. 2009;113(11):4712.

    Article  CAS  Google Scholar 

  23. Cheon SE, Ko KK, Kim SW, Chin EY, Kim HT. Rechargeable lithium sulfur battery. Rate capability and cycle characteristic. J Electrochem Soc. 2003;150(6):A800.

    Article  CAS  Google Scholar 

  24. Lee YM, Choi NS, Park JH, Park JK. Electrochemical performance of lithium/sulfur batteries with protected Li anodes. J Power Sources. 2003;119:964.

    Article  Google Scholar 

  25. Diao Y, Xie K, Xiong SZ, Hong XB. Shuttle phenomenon—the irreversible oxidation mechanism of sulfur active material in Li–S battery. J Power Sources. 2013;235:181.

    Article  CAS  Google Scholar 

  26. Peng HJ, Huang JQ, Cheng XB, Zhang Q. Review on high-loading and high-energy lithium–sulfur batteries. Adv Energy Mater. 2017;7(24):1.

    Google Scholar 

  27. Hagen M, Dörfler S, Fanz P, Berger T, Speck R, Tubke J, Althues H, Hoffmann MJ, Scherr C, Kaskel S. Development and costs calculation of lithium–sulfur cells with high sulfur load and binder free electrodes. J Power Sources. 2013;224(4):260.

    Article  CAS  Google Scholar 

  28. Fan FY, Carter WC, Chiang YM. Mechanism and kinetics of Li2S precipitation in lithium–sulfur batteries. Adv Mater. 2015;27(35):5203.

    Article  CAS  Google Scholar 

  29. Deng Z, Zhang Z, Lai Y, Liu J, Li J, Liu Y. Electrochemical impedance spectroscopy study of a lithium/sulfur battery: modeling and analysis of capacity fading. J Electrochem Soc. 2013;160(4):A553.

    Article  CAS  Google Scholar 

  30. Kolosnitsyn VS, Kuzmina EV, Karaseva EV, Mochalov SE. A study of the electrochemical processes in lithium–sulfur cells by impedance spectroscopy. J Power Sources. 2011;196(3):1478.

    Article  CAS  Google Scholar 

  31. Kolosnitsyn VS, Kuzmina EV, Karaseva EV, Mochalov SE. Impedance spectroscopy studies of changes in the properties of lithium–sulfur cells in the course of cycling. Russ J Electrochem. 2011;47(7):793.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the Beijing Municipal Science and Technology Project (No. Z171100000917021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi-Gang Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiao, C., Zhao, CR., Zhang, L. et al. Electrochemical properties of high-loading sulfur–carbon materials prepared by in situ generation method. Rare Met. 42, 3877–3885 (2023). https://doi.org/10.1007/s12598-019-01262-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-019-01262-x

Keywords

Navigation