Skip to main content
Log in

Microstructural evolution, tensile property and dynamic compressive property of FSWed Ti–6Al–4V alloy

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Friction stir welding was applied to Ti–6Al–4V plates with 5 mm in thickness. The microstructure and mechanical properties were investigated. A full lamellar microstructure was developed near the top surface, and the size of prior β grain gradually decreases as the distance from the top surface increases. The microstructure of the bottom is fine equiaxed α grains, and the mean size is 2 μm. A mixture microstructure consisting of primary α, lamellar α + β and fine equiaxed α is discovered in thermomechanically affected zone (TMAZ). Results of transverse tensile test show that the tensile strength of the joint reaches 98% that of the base material (BM). Quasi-static compression test shows that the joint exhibits larger compressive strength and failure strain than the BM. Dynamic compressive strength of the joint is close to that of the BM; furthermore, the strain at the peak stress and energy absorption of the joint are larger than those of the BM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Mishra RS, Ma ZY. Friction stir welding and processing. Mater Sci Eng R Rep. 2005;50(1–2):1.

    Article  Google Scholar 

  2. Heidarzadeh Akbar, Saeid Tohid. Correlation between process parameters, grain size and hardness of friction-stir-welded Cu–Zn alloys. Rare Met. 2018;37(5):388.

    Article  CAS  Google Scholar 

  3. Pilchak AL, Williams JC. Microstructure and texture evolution during friction stir processing of fully lamellar Ti–6Al–4V. Metall Mater Trans A. 2010;42(3):773.

    Article  Google Scholar 

  4. Pilchak AL, Tang W, Sahiner H, Reynolds AP, Williams JC. Microstructure evolution during friction stir welding of mill-annealed Ti–6Al–4V. Metall Mater Trans A. 2010;42(3):745.

    Article  Google Scholar 

  5. Esmaily M, Nooshin Mortazavi S, Todehfalah P, Rashidi M. Microstructural characterization and formation of α′ martensite phase in Ti–6Al–4V alloy butt joints produced by friction stir and gas tungsten arc welding processes. Mater Des. 2013;47:143.

    Article  CAS  Google Scholar 

  6. Fujii H, Sun Y, Kato H, Nakata K. Investigation of welding parameter dependent microstructure and mechanical properties in friction stir welded pure Ti joints. Mater Sci Eng A. 2010;527(15):3386.

    Article  Google Scholar 

  7. Kitamura K, Fujii H, Iwata Y, Sun YS, Morisada Y. Flexible control of the microstructure and mechanical properties of friction stir welded Ti–6Al–4V joints. Mater Des. 2013;46:348.

    Article  CAS  Google Scholar 

  8. Jiang X, Wynne BP, Martin J. Microstructure and texture evolution of stationary shoulder friction stir welded Ti6Al4V alloy. Sci Technol Weld Join. 2015;20(7):594.

    Article  CAS  Google Scholar 

  9. Yoon S, Ueji R, Fujii H. Effect of initial microstructure on Ti–6Al–4V joint by friction stir welding. Mater Des. 2015;88:1269.

    Article  CAS  Google Scholar 

  10. Yoon S, Ueji R, Fujii H. Effect of rotation rate on microstructure and texture evolution during friction stir welding of Ti–6Al–4V plates. Mater Charact. 2015;106:352.

    Article  CAS  Google Scholar 

  11. Yoon S, Ueji R, Fujii H. Microstructure and texture distribution of Ti–6Al–4V alloy joints friction stir welded below β-transus temperature. J Mater Process Technol. 2016;229:390.

    Article  CAS  Google Scholar 

  12. Su J, Wang J, Mishra RS, Xu R, Baumann JA. Microstructure and mechanical properties of a friction stir processed Ti–6Al–4V alloy. Mater Sci Eng A. 2013;573:67.

    Article  CAS  Google Scholar 

  13. Wang J, Su J, Mishra RS, Xu R, Baumann JA. A preliminary study of deformation behavior of friction stir welded Ti–6Al–4V. J Mater Eng Perform. 2014;23(8):3027.

    Article  CAS  Google Scholar 

  14. Zhang Y, Sato YS, Kokawa H, Park SHC, Hirano S. Microstructural characteristics and mechanical properties of Ti–6Al–4V friction stir welds. Mater Sci Eng A. 2008;485(1–2):448.

    Article  Google Scholar 

  15. Wu Q, Yang SY. Microstructure and properties of bonding interface in explosive welded AZ31/1060 composite plate. Chin J Rare Met. 2016;40(10):996.

    Google Scholar 

  16. Edwards P, Ramulu M. Fatigue performance of friction stir welded titanium structural joints. Int J Fatigue. 2015;70:171.

    Article  CAS  Google Scholar 

  17. Edwards P, Ramulu M. Fatigue performance of friction stir welded Ti–6Al–4V subjected to various post weld heat treatment temperatures. Int J Fatigue. 2015;75:19.

    Article  CAS  Google Scholar 

  18. Edwards P, Ramulu M. Identification of process parameters for friction stir welding Ti–6Al–4V. J Eng Mater Technol. 2010;132(3):1.

    Article  Google Scholar 

  19. Edwards P, Ramulu M. Peak temperatures during friction stir welding of Ti–6Al–4V. Sci Technol Weld Join. 2013;15(6):468.

    Article  Google Scholar 

  20. Edwards P, Ramulu M. Surface residual stresses in Ti–6Al–4V friction stir welds: pre- and post-thermal stress relief. J Mater Eng Perform. 2015;24(9):3263.

    Article  CAS  Google Scholar 

  21. Edwards PD, Ramulu M. Investigation of microstructure, surface and subsurface characteristics in titanium alloy friction stir welds of varied thicknesses. Sci Technol Weld Join. 2013;14(5):476.

    Article  Google Scholar 

  22. Edwards PD, Ramulu M. Material flow during friction stir welding of Ti–6Al–4V. J Mater Process Technol. 2015;218:107.

    Article  CAS  Google Scholar 

  23. Ramulu M, Edwards PD, Sanders DG, Reynolds AP, Trapp T. Tensile properties of friction stir welded and friction stir welded-superplastically formed Ti–6Al–4V butt joints. Mater Des. 2010;31(6):3056.

    Article  CAS  Google Scholar 

  24. Sanders DG, Edwards P, Cantrell AM, Gangwar K, Ramulu M. Friction stir-welded titanium alloy Ti–6Al–4V: microstructure, mechanical and fracture properties. JOM. 2015;67(5):1054.

    Article  CAS  Google Scholar 

  25. Wang Z, Ma H, Zhao L, Yang G. Studies on the dynamic compressive properties of open-cell aluminum alloy foams. Scr Mater. 2006;54(1):83–7.

    Article  CAS  Google Scholar 

  26. Edwin Raj R, Parameswaran V, Daniel BSS. Comparison of quasi-static and dynamic compression behavior of closed-cell aluminum foam. Mater Sci Eng A. 2009;526(1–2):11–5.

    Article  Google Scholar 

  27. Mukai T, Miyoshi T, Nakano S, Somekawa H, Higashi K. Compressive response of a closed-cell aluminum foam at high strain rate. Scr Mater. 2006;54(4):533.

    Article  CAS  Google Scholar 

  28. Zhou L, Liu HJ, Liu QW. Effect of process parameters on stir zone microstructure in Ti–6Al–4V friction stir welds. J Mater Sci. 2009;45(1):39.

    Article  Google Scholar 

  29. Liu HJ, Zhou L, Liu QW. Microstructural evolution mechanism of hydrogenated Ti–6Al–4V in the friction stir welding and post-weld dehydrogenation process. Scr Mater. 2009;61(11):1008.

    Article  CAS  Google Scholar 

  30. Zhou L, Liu HJ, Liu QW. Effect of rotation speed on microstructure and mechanical properties of Ti–6Al–4V friction stir welded joints. Mater Des. 2010;31(5):2631.

    Article  CAS  Google Scholar 

  31. Liu HJ, Zhou L, Liu QW. Microstructural characteristics and mechanical properties of friction stir welded joints of Ti–6Al–4V titanium alloy. Mater Des. 2010;31(3):1650.

    Article  CAS  Google Scholar 

  32. Wu LH, Wang D, Xiao BL, Ma ZY. Microstructural evolution of the thermomechanically affected zone in a Ti–6Al–4V friction stir welded joint. Scr Mater. 2014;78–79:17.

    Article  Google Scholar 

  33. Liu HJ, Zhou L. Microstructural zones and tensile characteristics of friction stir welded joint of TC4 titanium alloy. Trans Nonferrous Met Soc China. 2010;20(10):1873.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (No. 51571031).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Su-Yuan Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bao, JW., Yang, SY. & Yang, T. Microstructural evolution, tensile property and dynamic compressive property of FSWed Ti–6Al–4V alloy. Rare Met. 39, 169–175 (2020). https://doi.org/10.1007/s12598-018-1151-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-018-1151-6

Keywords

Navigation