Skip to main content
Log in

Effect of process parameters on stir zone microstructure in Ti–6Al–4V friction stir welds

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The effects of the main process variables on the stir zone microstructure in friction stir welds were investigated for Ti–6Al–4V. Welds were produced by employing varying welding speeds under a constant rotation speed or different rotation speeds at a constant welding speed. The stir zone microstructure was examined by optical microscopy and transmission electron microscopy. It was found that the stir zone microstructure was determined by the parameters controlling temperature and deformation history during the friction stir welding. A bimodal microstructure characterized by primary α and transformed β with lamellar α + β or a full lamellar microstructure composed of basket-weave α + β lamellae could be developed in the stir zone. The microstructural evolution mechanism in the stir zone was discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Polmear IJ (1996) Mater Trans JIM 37:12

    Article  CAS  Google Scholar 

  2. Venkateswaran P, Xu ZH, Li XD, Reynolds AP (2009) J Mater Sci 44:4140. doi:https://doi.org/10.1007/s10853-009-3607-4

    Article  CAS  Google Scholar 

  3. Chen T (2009) J Mater Sci 44:2573. doi:https://doi.org/10.1007/s10853-009-3336-8

    Article  CAS  Google Scholar 

  4. Lee CY, Lee WB, Kim JW, Choi DH, Yeon YM, Jung SB (2008) J Mater Sci 43:3296. doi:https://doi.org/10.1007/s10853-008-2525-1

    Article  CAS  Google Scholar 

  5. Gerlich A, Yamamoto M, North TH (2008) J Mater Sci 43:2. doi:https://doi.org/10.1007/s10853-007-1791-7

    Article  CAS  Google Scholar 

  6. Zhang Z, Chen JT (2008) J Mater Sci 43:222. doi:https://doi.org/10.1007/s10853-007-2129-1

    Article  CAS  Google Scholar 

  7. Mishra RS, Ma ZY (2005) Mater Sci Eng R 50:1

    Article  Google Scholar 

  8. Nandan R, DebRoy T, Bhadeshia H (2008) Prog Mater Sci 53:980

    Article  CAS  Google Scholar 

  9. Bhadeshia H, DebRoy T (2009) Sci Technol Weld Join 14:193

    Article  CAS  Google Scholar 

  10. Gan W, Li ZT, Khurana S (2007) Sci Technol Weld Join 12:610

    Article  CAS  Google Scholar 

  11. Lienert TJ, Stellwag WL, Grimmett BB, Warke RW (2003) Weld J 82:1

    Article  Google Scholar 

  12. Pilchak AL, Juhas MC, Williams JC (2007) Metall Mater Trans A 38:435

    Article  Google Scholar 

  13. Reynolds AP, Hood E, Tang W (2005) Scr Mater 52:491

    Article  CAS  Google Scholar 

  14. Pilchak AL, Juhas MC, Williams JC (2007) Metall Mater Trans A 38:401

    Article  Google Scholar 

  15. Mironov S, Zhang Y, Sato YS, Kokawa H (2008) Scr Mater 59:27

    Article  CAS  Google Scholar 

  16. Mironov S, Zhang Y, Sato YS, Kokawa H (2008) Scr Mater 59:511

    Article  CAS  Google Scholar 

  17. Pilchak AL, Norfleet DM, Juhas MC, Williams JC (2008) Metall Mater Trans A 39:1519

    Article  Google Scholar 

  18. Sanders DG, Ramulu M, Edwards PD (2008) Materialwiss Werkstofftech 39:353

    Article  CAS  Google Scholar 

  19. Sanders DG, Ramulu M, Klock-McCook EJ, Edwards PD, Reynolds AP, Trapp T (2008) J Mater Eng Perform 17:187

    Article  CAS  Google Scholar 

  20. Lee WB, Lee CY, Chang WS, Yeon YM, Jung SB (2005) Mater Lett 59:3315

    Article  CAS  Google Scholar 

  21. Zhang Y, Sato YS, Kokawa H, Park SHC, Hirano S (2008) Mater Sci Eng A 488:25

    Article  Google Scholar 

  22. Zhang Y, Sato YS, Kokawa H, Park SHC, Hirano S (2008) Mater Sci Eng A 485:448

    Article  Google Scholar 

  23. Ramirez AJ, Juhas MC (2003) Mater Sci Forum 426–432:2999

    Article  Google Scholar 

  24. Lienert TJ, Jata KV, Wheeler R, Seetharaman V (2001) Proceedings of joining of advanced and specialty materials III. ASM International, Materials Park

  25. Juhas MC, Viswanathan GB, Fraser HL (2001) Proceedings of lightweight alloys for aerospace application. TMS, Warrendale

  26. Lüjering G (1998) Mater Sci Eng A 243:32

    Article  Google Scholar 

  27. Leyens C, Peters M (2003) Titanium and titanium alloys. Wiley-VCH, Cologne

    Book  Google Scholar 

  28. Ding R, Guo Z, Wilson A (2002) Mater Sci Eng A 327:233

    Article  Google Scholar 

  29. Humphreys FJ, Hatherly M (2004) Recrystallization and related annealing phenomena, 2nd edn. Elsevier, Amsterdam

    Google Scholar 

  30. Hassan AA, Prangnell PB, Norman AF, Price DA, Williams SW (2003) Sci Technol Weld Join 8:257

    Article  CAS  Google Scholar 

  31. Cavaliere P, Squillace A, Panella F (2008) J Mater Process Technol 200:364

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research was sponsored by the National Key Technology Research and Development Program No. 2006BAF04B09, Ministry of Science and Technology, P.R. China, and was supported by the Program of Excellent Team in Harbin Institute of Technology, P.R. China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. J. Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, L., Liu, H.J. & Liu, Q.W. Effect of process parameters on stir zone microstructure in Ti–6Al–4V friction stir welds. J Mater Sci 45, 39–45 (2010). https://doi.org/10.1007/s10853-009-3881-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-009-3881-1

Keywords

Navigation