Skip to main content

Advertisement

Log in

Few-layered ReS2 nanosheets grown on graphene as electrocatalyst for hydrogen evolution reaction

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Few-layered ReS2 two-dimensional (2D) semiconductor nanosheets directly nucleated and grown on reduced graphene oxide (RGO) were synthesized through a facile hydrothermal method. Compared with bare ReS2, the ReS2/RGO hybrid delivers much better electrocatalytic activity for hydrogen evolution reaction (HER) in acidic media. It exhibits a lower Tafel slope of 107.4 mV·dec−1 and a larger current density of − 5.2 mA·cm−2 at − 250 mV (vs. RHE), compared with ReS2 (152.7 mV·dec−1, − 3.1 mA·cm−2). The ReS2/RGO hybrid has a unique architecture constructed by highly conductive and porous RGO internetworks, which guarantees easy electrolyte infiltration and efficient charge transfer and provides sufficient active edge sites, resulting in enhanced HER performance. The present synthesis approach can be extended to synthesize other 2D-semiconductor-based composites for energy storage and catalytic devices.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Li P, Yang Z, Shen J, Nie H, Cai Q, Li L, Ge M, Gu C, Chen XA, Yang K, Zhang L, Chen Y, Huang S. Subnanometer molybdenum sulfide on carbon nanotubes as a highly active and stable electrocatalyst for hydrogen evolution reaction. ACS Appl Mater Interfaces. 2016;8(5):3543.

    Article  CAS  Google Scholar 

  2. Fan X, Zhou H, Guo X. WC nanocrystals grown on vertically aligned carbon nanotubes: an efficient and stable electrocatalyst for hydrogen evolution reaction. ACS Nano. 2015;9(5):5125.

    Article  CAS  Google Scholar 

  3. Zhou H, Wang Y, He R, Yu F, Sun J, Wang F, Lan Y, Ren Z, Chen S. One-step synthesis of self-supported porous NiSe2/Ni hybrid foam: an efficient 3D electrode for hydrogen evolution reaction. Nano Energy. 2016;20:29.

    Article  CAS  Google Scholar 

  4. Li H, Tsai C, Koh AL, Cai L, Contryman AW, Fragapane AH, Zhao J, Han HS, Manoharan HC, Abild-Pedersen F, Norskov JK, Zheng X. Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. Nat Mater. 2016;15(1):48.

    Article  CAS  Google Scholar 

  5. Kiriya D, Lobaccaro P, Nyein HYY, Taheri P, Hettick M, Shiraki H, Sutter-Fella CM, Zhao P, Gao W, Maboudian R, Ager JW, Javey A. General thermal texturization process of MoS2 for efficient electrocatalytic hydrogen evolution reaction. Nano Lett. 2016;16(7):4047.

    Article  CAS  Google Scholar 

  6. Wang H, Kong D, Johanes P, Cha JJ, Zheng G, Yan K, Liu N, Cui Y. MoSe2 and WSe2 nanofilms with vertically aligned molecular layers on curved and rough surfaces. Nano Lett. 2013;13(7):3426.

    Article  CAS  Google Scholar 

  7. Zhang Y, Gong Q, Li L, Yang H, Li Y, Wang Q. MoSe2 porous microspheres comprising monolayer flakes with high electrocatalytic activity. Nano Res. 2015;8(4):1108.

    Article  CAS  Google Scholar 

  8. Zheng B, Chen Y, Qi F, Wang X, Zhang W, Li Y, Li X. 3D-hierarchical MoSe2 nanoarchitecture as a highly efficient electrocatalyst for hydrogen evolution. 2D Mater. 2017;4:0250922.

    Google Scholar 

  9. Qi F, Wang X, Zheng B, Chen Y, Yu B, Zhou J, He J, Li P, Zhang W, Li Y. Self-assembled chrysanthemum-like microspheres constructed by few-layer ReSe2 nanosheets as a highly efficient and stable electrocatalyst for hydrogen evolution reaction. Electrochim Acta. 2017;224:593.

    Article  CAS  Google Scholar 

  10. Henckel DA, Lenz O, Cossairtt BM. Effect of ligand coverage on hydrogen evolution catalyzed by colloidal WSe2. ACS Catal. 2017;7(4):2815.

    Article  CAS  Google Scholar 

  11. Wang X, Chen Y, Zheng B, Qi F, He J, Li Q, Li P, Zhang W. Graphene-like WSe2 nanosheets for efficient and stable hydrogen evolution. J Alloy Compd. 2017;691:698.

    Article  CAS  Google Scholar 

  12. Wang X, Chen Y, Qi F, Zheng B, He J, Li Q, Li P, Zhang W, Li Y. Interwoven WSe2/CNTs hybrid network: a highly efficient and stable electrocatalyst for hydrogen evolution. Electrochem Commun. 2016;72:74.

    Article  CAS  Google Scholar 

  13. Wang X, Chen Y, Zheng B, Qi F, He J, Li P, Zhang W. Few-layered WSe2 nanoflowers anchored on graphene nanosheets: a highly efficient and stable electrocatalyst for hydrogen evolution. Electrochim Acta. 2016;222:1293.

    Article  CAS  Google Scholar 

  14. Wang X, Chen Y, Zheng B, Qi F, He J, Yu B, Zhang W. Significant enhancement of photocatalytic activity of multi-walled carbon nanotubes modified WSe2 composite. Mater Lett. 2017;197:67.

    Article  CAS  Google Scholar 

  15. Yu B, Zheng B, Wang X, Qi F, He J, Zhang W, Chen Y. Enhanced photocatalytic properties of graphene modified few-layered WSe2 nanosheets. Appl Surf Sci. 2017;400:420.

    Article  CAS  Google Scholar 

  16. Wu Z, Fang B, Bonakdarpour A, Sun A, Wilkinson DP, Wang D. WS2 nanosheets as a highly efficient electrocatalyst for hydrogen evolution reaction. Appl Catal B. 2012;125:59.

    Article  CAS  Google Scholar 

  17. Cheng L, Huang W, Gong Q, Liu C, Liu Z, Li Y, Dai H. Ultrathin WS2 nanoflakes as a high-performance electrocatalyst for the hydrogen evolution reaction. Angew Chem Int Ed. 2014;53(30):7860.

    Article  CAS  Google Scholar 

  18. Lukowski MA, Daniel AS, English CR, Meng F, Forticaux A, Hamers RJ, Jin S. Highly active hydrogen evolution catalysis from metallic WS2 nanosheets. Energ Environ Sci. 2014;7(8):2608.

    Article  CAS  Google Scholar 

  19. Qi F, Li P, Chen Y, Zheng B, Liu J, Zhou J, He J, Hao X, Zhang W. Three-dimensional structure of WS2/graphene/Ni as a binder-free electrocatalytic electrode for highly effective and stable hydrogen evolution reaction. Int J Hydrog Energy. 2017;42(12):7811.

    Article  CAS  Google Scholar 

  20. Yu B, Wang X, Qi F, Zheng B, He J, Lin J, Zhang W, Li Y, Chen Y. Self-assembled coral-like hierarchical architecture constructed by NiSe2 nanocrystals with comparable hydrogen-evolution performance of precious platinum catalyst. ACS Appl Mater Interfaces. 2017;9(8):7154.

    Article  CAS  Google Scholar 

  21. Wang B, Wang X, Zheng B, Yu B, Qi F, Zhang W, Li Y, Chen Y. NiSe2 nanoparticles embedded in CNT networks: scalable synthesis and superior electrocatalytic activity for the hydrogen evolution reaction. Electrochem Commun. 2017;83:51.

    Article  CAS  Google Scholar 

  22. Yu B, Hu Y, Qi F, Wang X, Zheng B, Liu K, Zhang W, Li Y, Chen Y. Nanocrystalline Ni0.85Se as efficient non-noble-metal electrocatalyst for hydrogen evolution reaction. Electrochim Acta. 2017;242:25.

    Article  CAS  Google Scholar 

  23. Lin J, He J, Qi F, Zheng B, Wang X, Yu B, Zhou K, Zhang W, Li Y, Chen Y. In-situ selenization of co-based metal-organic frameworks as a highly efficient electrocatalyst for hydrogen evolution reaction. Electrochim Acta. 2017;247:258.

    Article  CAS  Google Scholar 

  24. Zhang H, Lei L, Zhang X. One-step synthesis of cubic pyrite-type CoSe2 at low temperature for efficient hydrogen evolution reaction. RSC Adv. 2014;4(97):54344.

    Article  CAS  Google Scholar 

  25. Ma R, Shang H, Wang X, Jiang D. Dielectric, magnetic and microwave absorbing properties of polyaniline-Co0.7Cr0.1Zn0.2Fe2O4 composites. Rare Metals. 2017;36(2):118.

    Article  CAS  Google Scholar 

  26. Yu B, Qi F, Chen Y, Wang X, Zheng B, Zhang W, Li Y, Zhang L. Nanocrystalline Co0.85Se anchored on graphene nanosheets as a highly efficient and stable electrocatalyst for hydrogen evolution reaction. ACS Appl Mater Interfaces. 2017;9(36):30703.

    Article  CAS  Google Scholar 

  27. Yu B, Qi F, Chen Y, Wang X, Zheng B, Hou W, Hu Y, Lin J, Zhang W, Li Y, Chen Y. Nanocrystalline Co0.85Se as a highly efficient non-noble-metal electrocatalyst for hydrogen evolution reaction. Electrochim Acta. 2017;247:468.

    Article  CAS  Google Scholar 

  28. Zhou K, He J, Wang X, Lin J, Jing Y, Zhang W, Chen Y. Self-assembled CoSe2 nanocrystals embedded into carbon nanowires as highly efficient catalyst for hydrogen evolution reaction. Electrochim Acta. 2017;231:626.

    Article  CAS  Google Scholar 

  29. Yue H, Yu B, Qi F, Zhou J, Wang X, Zheng B, Zhang W, Li Y, Chen Y. Interwoven CoSe2/CNTs hybrid as a highly efficient and stable electrocatalyst for hydrogen evolution reaction. Electrochim Acta. 2017;253:200.

    Article  CAS  Google Scholar 

  30. Wang ZG, Li Q, Besenbacher F, Dong MD. Facile synthesis of single crystal PtSe2 nanosheets for nanoscale electronics. Adv Mater. 2016;28(46):10224.

    Article  CAS  Google Scholar 

  31. Tongay S, Sahin H, Ko C, Luce A, Fan W, Liu K, Zhou J, Huang Y, Ho C, Yan J, Ogletree DF, Aloni S, Ji J, Li S, Li J, Peeters FM, Wu J. Monolayer behaviour in bulk ReS2 due to electronic and vibrational decoupling. Nat Commun. 2014;5:3252.

    Article  Google Scholar 

  32. Fujita T, Ito Y, Tan Y, Yamaguchi H, Hojo D, Hirata A, Voiry D, Chhowalla M, Chen M. Chemically exfoliated ReS2 nanosheets. Nanoscale. 2014;6(21):12458.

    Article  CAS  Google Scholar 

  33. Gao J, Li L, Tan J, Sun H, Li B, Idrobo JC, Singh CV, Lu T, Koratkar N. Vertically oriented arrays of ReS2 nanosheets for electrochemical energy storage and electrocatalysis. Nano Lett. 2016;16(6):3780.

    Article  CAS  Google Scholar 

  34. Qi F, Chen Y, Zheng B, He J, Li Q, Wang X, Yu B, Lin J, Zhou J, Li P, Zhang W. 3D chrysanthemum-like ReS2 microspheres composed of curly few-layered nanosheets with enhanced electrochemical properties for lithium-ion batteries. J Mater Sci. 2017;52(7):3622.

    Article  CAS  Google Scholar 

  35. Li Y, Wang H, Xie L, Liang Y, Hong G, Dai H. MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. J Am Chem Soc. 2011;133(19):7296.

    Article  CAS  Google Scholar 

  36. Wang ZG, Li PJ, Chen YF, He JR, Zhang WL, Schmidt OG, Li YR. Pure thiophene-sulfur doped reduced graphene oxide: synthesis, structure, and electrical properties. Nanoscale. 2014;6(13):7281.

    Article  CAS  Google Scholar 

  37. Peng S, Li L, Han X, Sun W, Srinivasan M, Mhaisalkar SG, Cheng F, Yan Q, Chen J, Ramakrishna S. Cobalt sulfide nanosheet/graphene/carbon nanotube nanocomposites as flexible electrodes for hydrogen evolution. Angew Chem Int Ed. 2014;53(46S):12594.

    CAS  Google Scholar 

  38. Kwak IH, Im HS, Jang DM, Kim YW, Park K, Lim YR, Cha EH, Park J. CoSe2 and NiSe2 nanocrystals as superior bifunctional catalysts for electrochemical and photoelectrochemical water splitting. ACS Appl Mater Interfaces. 2016;8(8):5327.

    Article  CAS  Google Scholar 

  39. Zhou Y, Xiao H, Zhang S, Li Y, Wang S, Wang Z, An C, Zhang J. Interlayer expanded lamellar CoSe2 on carbon paper as highly efficient and stable overall water splitting electrodes. Electrochim Acta. 2017;241:106.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 51372033), the National High Technology Research and Development Program of China (No. 2015AA034202) and the Program of the Ministry of Education of China for Introducing Talents of Discipline to Universities (No. B13042).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan-Fu Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, H., Yue, HH., Qi, F. et al. Few-layered ReS2 nanosheets grown on graphene as electrocatalyst for hydrogen evolution reaction. Rare Met. 37, 1014–1020 (2018). https://doi.org/10.1007/s12598-018-1121-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-018-1121-z

Keywords

Navigation