Skip to main content

Advertisement

Log in

A high-Nb–TiAl alloy with ultrafine-grained structure fabricated by cryomilling and spark plasma sintering

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

In this work, an ultrafine-grained high-Nb–TiAl alloy with a nominal composition of Ti–45Al–8Nb–0.2W–0.2B (at%) was prepared by cryomilling and subsequent spark plasma sintering (SPS) technique. The chemical composition, particle size, morphology and crystallite size of cryomilled powder were studied. It is found that cryomilling can effectively reduce the particle size and enhance grain refinement. The ingots sintered at 900 and 1000 °C show an equiaxed near-γ microstructure with grain sizes < 700 nm, while the sample sintered at 1100 °C exhibits duplex microstructure. Especially, the one sintered at 1000 °C has excellent mechanical properties, whose compression yield strength, fracture strength, bending strength and plastic strain achieve 1310, 2174, 578 MPa and 16.8%, respectively. The reasons for the effect of cryomilling and the mechanical behavior of sintered ingots were discussed. It is suggested that cryomilling in combination with SPS is an effective way to synthesize high-Nb–TiAl alloy with ultrafine-grained structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Clemens H, Mayer S. Design, processing, microstructure, properties, and applications of advanced intermetallic TiAl alloys. Adv Eng Mater. 2013;15(4):191.

    Article  CAS  Google Scholar 

  2. Kothari K, Radhakrishnan R, Wereley NM. Advances in gamma titanium aluminides and their manufacturing techniques. Prog Aerosp Sci. 2012;55:1.

    Article  Google Scholar 

  3. Liu ZC, Lin JP, Li SJ, Chen GL. Effects of Nb and Al on the microstructures and mechanical properties of high Nb containing TiAl base alloys. Intermetallics. 2002;10(7):653.

    Article  CAS  Google Scholar 

  4. Liang YF, Xu XJ, Lin JP. Advances in phase relationship for high Nb-containing TiAl alloys. Rare Met. 2016;35(1):15.

    Article  CAS  Google Scholar 

  5. Lu X, He XB, Zhang B, Zhang L, Qu XH, Guo ZX. Microstructure and mechanical properties of a spark plasma sintered Ti–45Al–8.5Nb–0.2W–0.2B–0.1Y alloy. Intermetallics. 2009;17(10):840.

    Article  CAS  Google Scholar 

  6. Stroosnijder MF, Zheng N, Quadakkers WJ, Hofman R, Gil A, Lanza F. The effect of niobium ion implantation on the oxidation behavior of a γ-TiAl-based intermetallic. Oxid Met. 1996;46(1):19.

    Article  CAS  Google Scholar 

  7. Maziasz PJ, Ramanujan RV, Liu CT, Wright JL. Effects of B and W alloying additions on the formation and stability of lamellar structures in two-phase γ-TiAl. Intermetallics. 1997;5(2):83.

    Article  CAS  Google Scholar 

  8. Cao SZ, Xiao SL, Chen YY, Tian J, Xu LJ, Wang XP, Han JC, Jia Y. Microstructure evolution of Ti–46Al–6Nb–(Si, B) alloys during heat treatment with W addition. Rare Met. 2016;35(1):85.

    Article  CAS  Google Scholar 

  9. Hyman ME, McCullough C, Valencia JJ, Levi CG, Mehrabian R. Microstructure evolution in TiAl alloys with B additions: conventional solidification. Metall Trans A. 1989;20(9):1847.

    Article  Google Scholar 

  10. Cheng TT. The mechanism of grain refinement in TiAl alloys by boron addition-an alternative hypothesis. Intermetallics. 2000;8(1):29.

    Article  CAS  Google Scholar 

  11. Hu DW. Role of boron in TiAl alloy development: a review. Rare Met. 2016;35(1):1.

    Article  Google Scholar 

  12. Zhang WJ, Appel F. Effect of Al content and Nb addition on the strength and fault energy of TiAl alloys. Mater Sci Eng A. 2002;329–331:649.

    Article  Google Scholar 

  13. Chen GL, Xu XJ, Teng ZK, Wang YL, Lin JP. Microsegregation in high Nb containing TiAl alloy ingots beyond laboratory scale. Intermetallics. 2007;15(5):625.

    Article  CAS  Google Scholar 

  14. Meyers MA, Mishra A, Benson DJ. Mechanical properties of nanocrystalline materials. Prog Mater Sci. 2006;51(4):427.

    Article  CAS  Google Scholar 

  15. Gerling R, Clemens H, Schimansky FP. Powder metallurgical processing of intermetallic gamma titanium aluminides. Adv Eng Mater. 2004;6(1–2):23.

    Article  CAS  Google Scholar 

  16. Witkin DB, Lavernia EJ. Synthesis and mechanical behavior of nanostructured materials via cryomilling. Prog Mater Sci. 2006;51(1):1.

    Article  CAS  Google Scholar 

  17. Shanmugasundaram T, Guyon J, Monchoux JP, Hazotte A, Bouzy E. On grain refinement of a γ-TiAl alloy using cryo-milling followed by spark plasma sintering. Intermetallics. 2015;66:141.

    Article  CAS  Google Scholar 

  18. Nouri A, Hodgson PD, Wen CE. Effect of process control agent on the porous structure and mechanical properties of a biomedical Ti–Sn–Nb alloy produced by powder metallurgy. Acta Biomater. 2010;6(4):1630.

    Article  CAS  Google Scholar 

  19. Gwon JH, Kim JH, Lee KA. Effect of cryomilling on the high temperature creep properties of oxide dispersion strengthened steels. Mater Sci Eng A. 2016;676:209.

    Article  CAS  Google Scholar 

  20. Li JL, Xiong YC, Wang XD, Yan SJ, Yang C, He WW, Chen JZ, Wang SQ, Zhang XY, Dai SL. Microstructure and tensile properties of bulk nanostructured aluminum/graphene composites prepared via cryomilling. Mater Sci Eng A. 2015;626:400.

    Article  CAS  Google Scholar 

  21. Milligan J, Vintila R, Brochu M. Nanocrystalline eutectic Al–Si alloy produced by cryomilling. Mater Sci Eng A. 2009;508(1):43.

    Article  Google Scholar 

  22. Wen H, Topping TD, Isheim D, Seidman DN, Lavernia EJ. Strengthening mechanisms in a high-strength bulk nanostructured Cu–Zn–Al alloy processed via cryomilling and spark plasma sintering. Acta Mater. 2013;61(8):2769.

    Article  CAS  Google Scholar 

  23. Zhu XK, Zhang X, Wang H, Sergueeva AV, Mukherjee AK, Scattergood RO, Narayan J, Koch CC. Synthesis of bulk nanostructured Zn by combinations of cryomilling and powder consolidation by room temperature milling: optimizing mechanical properties. Scr Mater. 2003;49(5):429.

    Article  CAS  Google Scholar 

  24. Voisin T, Monchoux JP, Durand L, Karnatak N, Thomas M, Couret A. An innovative way to produce γ-TiAl blades: spark plasma sintering. Adv Eng Mater. 2015;17(10):1408.

    Article  CAS  Google Scholar 

  25. Clemens H, Kestler H. Processing and applications of intermetallic γ-TiAl-based alloys. Adv Eng Mater. 2000;2(9):551.

    Article  CAS  Google Scholar 

  26. Jabbar H, Monchoux JP, Houdellier F, Dollé M, Schimansky FP, Pyczak F, Thomas M, Couret A. Microstructure and mechanical properties of high niobium containing TiAl alloys elaborated by spark plasma sintering. Intermetallics. 2010;18(12):2312.

    Article  CAS  Google Scholar 

  27. Yang F, Kong FT, Chen YY, Xiao SL. Effect of spark plasma sintering temperature on the microstructure and mechanical properties of a Ti2AlC/TiAl composite. J Alloys Compd. 2010;496(1):462.

    Article  CAS  Google Scholar 

  28. Chen YY, Yu HB, Zhang DL, Chai LH. Effect of spark plasma sintering temperature on microstructure and mechanical properties of an ultrafine grained TiAl intermetallic alloy. Mater Sci Eng A. 2009;525(1):166.

    Article  Google Scholar 

  29. Wang J, Wang Y, Liu Y, Li J, He L, Zhang C. Densification and microstructural evolution of a high niobium containing TiAl alloy consolidated by spark plasma sintering. Intermetallics. 2015;64:70.

    Article  CAS  Google Scholar 

  30. Wang G, Yang J, Li X. Microstructure and mechanical properties of a Ti–22Al–25Nb alloy fabricated from elemental powders by mechanical alloying and spark plasma sintering. J Alloys Compd. 2017;704:425.

    Article  Google Scholar 

  31. Bououdina M, Guo ZX. Characterisation of structural stability of (Ti(H2) + 22Al + 23Nb) powder mixtures during mechanical alloying. Mater Sci Eng A. 2002;332(1):210.

    Article  Google Scholar 

  32. Xun Y, Mohamed FA, Lavernia EJ. Synthesis of nanocrystalline Zn–22 Pct Al using cryomilling. Metall Mater Trans A. 2004;35(2):573.

    Article  Google Scholar 

  33. Sun F, Rojas P, Zúniga A, Lavernia EJ. Nanostructure in a Ti alloy processed using a cryomilling technique. Mater Sci Eng A. 2006;430(1):90.

    Article  Google Scholar 

  34. Shanmugasundaram T, Heilmaier M, Murty BS, Sarma VS. On the Hall–Petch relationship in a nanostructured Al–Cu alloy. Mater Sci Eng A. 2010;527(29):7821.

    Article  Google Scholar 

  35. Suryanarayana C. Mechanical alloying and milling. Prog Mater Sci. 2001;46(1):1.

    Article  CAS  Google Scholar 

  36. Zhang DL. Processing of advanced materials using high-energy mechanical milling. Prog Mater Sci. 2004;49(3):537.

    Article  CAS  Google Scholar 

  37. Guyon J, Hazotte A, Monchoux JP. Effect of powder state on spark plasma sintering of TiAl alloys. Intermetallics. 2013;34:94.

    Article  CAS  Google Scholar 

  38. Yu HB, Zhang DL, Chen YY, Cao P, Gabbitas B. Synthesis of an ultrafine grained TiAl based alloy by subzero temperature milling and HIP, its microstructure and mechanical properties. J Alloys Compd. 2009;474(1):105.

    Article  CAS  Google Scholar 

  39. Zhang X, Wang H, Narayan J, Koch CC. Evidence for the formation mechanism of nanoscale microstructures in cryomilled Zn powder. Acta Mater. 2001;49(8):1319.0.

    Article  Google Scholar 

  40. Li Y, Liu W, Ortalan V, Li WF, Zhang Z, Vogt R, Browning ND, Lavernia EJ, Schoenung JM. HRTEM and EELS study of aluminum nitride in nanostructured Al 5083/B4C processed via cryomilling. Acta Mater. 2010;58(5):1732.

    Article  CAS  Google Scholar 

  41. Chung KH, He J, Shin DH, Schoenung JM. Mechanisms of microstructure evolution during cryomilling in the presence of hard particles. Mater Sci Eng A. 2003;356(1):23.

    Article  Google Scholar 

  42. Zhang R, Acoff VL. Processing sheet materials by accumulative roll bonding and reaction annealing from Ti/Al/Nb elemental foils. Mater Sci Eng A. 2007;463(1):67.

    Google Scholar 

  43. Appel F, Christoph U, Wagner R. An electron microscope study of deformation and crack propagation in (α2 + γ) titanium aluminides. Philos Mag A. 1995;72(2):341.

    Article  CAS  Google Scholar 

  44. Kuang JP, Harding RA, Campbell J. Microstructures and properties of investment castings of γ-titanium aluminide. Mater Sci Eng A. 2002;329:31.

    Article  Google Scholar 

  45. Lamirand M, Bonnentien JL, Ferriere G, Chevalier JP. Relative effects of chromium and niobium on microstructure and mechanical properties as a function of oxygen content in TiAl alloys. Scr Mater. 2007;56(5):325.

    Article  CAS  Google Scholar 

  46. Couret A, Molénat G, Galy J, Thomas M. Microstructures and mechanical properties of TiAl alloys consolidated by spark plasma sintering. Intermetallics. 2008;16(9):1134.

    Article  CAS  Google Scholar 

  47. Cao R, Lei MX, Chen JH, Zhang J. Effects of loading rate on damage and fracture behavior of TiAl alloys. Mater Sci Eng A. 2007;465(1):183.

    Article  Google Scholar 

Download references

Acknowledgements

The study was financially supported by the National Natural Science Foundation of China (No. 11475118).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Tang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, H., Wei, YQ., Tang, J. et al. A high-Nb–TiAl alloy with ultrafine-grained structure fabricated by cryomilling and spark plasma sintering. Rare Met. 42, 1678–1685 (2023). https://doi.org/10.1007/s12598-018-1112-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-018-1112-0

Keywords

Navigation