Skip to main content
Log in

Role of boron in TiAl alloy development: a review

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Boron was found to be a unique grain refiner in cast TiAl alloys in the beginning of 1990s and has become an element in most of the TiAl alloys developed to date. Over the past 25 or so years, efforts to understand the role of boron in solidification, solid-phase transformation, thermal and thermomechanical processing and mechanical properties of TiAl alloys and the relevant mechanisms never ceased. As a result, abundant knowledge on boron in TiAl alloys has been accumulated but scattered in various research papers and conference proceedings. This review summarises the progress in understanding boron and its impacts on the TiAl alloy systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Bewlay BP, Weimer M, Kelly T, Suzuki A, Subramanian PR. The science, technology, and implementation of TiAl alloys in commercial aircraft engines. In: MRS Proceedings 1516. Boston; 2013. 49.

  2. Smarsly W, Esslinger J, Clemens H. TiAl for Turbine Applications—Status and Future Perspectives. Report at GTA 2015, Nanjing; 2015.

  3. Kim Y-W. Ordered intermetallic alloys, part III: gamma titanium aluminides. JOM. 1994;46:30.

    Article  Google Scholar 

  4. Larsen DE, Kampe S, Christodoulo L. Effect of XD™ TiB2 volume fraction on the microstructure of a cast near-gamma titanium aluminide alloy. In: MRS Proceedings 194. San Francisco, CA; 1990. 285.

  5. Kremmer S, Chladil HF, Clemens H, Otto A, Güther V. Near conventional forging of titanium aluminides. In: Proceedings of Ti-2007 Science and Technology. Sendai; 2007. 989.

  6. Larsen DE, Christodoulo L, Kampe S, Sadler P. Investment-cast processing of XD™ near-γ titanium aluminides. Mater Sci Eng, A. 1991;A144(1–2):45.

    Article  Google Scholar 

  7. Bryant JD, Christodoulou L, Maisano JR. Effect of TiB2 additions on the colony size of near gamma titanium aluminides. Scr Metall Mater. 1990;24(1):33.

    Article  Google Scholar 

  8. Hu D. Effect of composition on grain refinement in TiAl-based alloys. Intermetallics. 2001;9(12):1037.

    Article  Google Scholar 

  9. Godfrey AB, Loretto MH. The nature of complex precipitates associated with the addition of boron to a γ-based titanium aluminide. Intermetallics. 1996;4(1):47.

    Article  Google Scholar 

  10. Blenkinsop PA, Godfrey AB. Method of adding boron to a heavy metal containing titanium aluminide alloy. US patent; US6488073B1, 2002.

  11. Kartavykh AV, Asnis EA, Piskun NV, Statkevich II, Gorshenkov MV, Tcherdyntsev VV. Lanthanum hexaboride as advanced structural refiner/getter in TiAl-based refractory intermetallics. J Alloys Compd. 2014;588:122.

    Article  Google Scholar 

  12. Yang C, Hu D, Huang A, Dixon M. Solidification and grain refinement in Ti45Al2Mn2Nb1B subjected to fast cooling. Intermetallics. 2013;32:64.

    Article  Google Scholar 

  13. Christodoulou L. Microstructural Effects in γ-Titanium Aluminides; XD TiAl alloys as an Example. Report in 1st IRC International Gamma TiAl Workshop, Birmingham; 1995.

  14. Shih D, Kim Y-W. Sheet rolling and performance evaluation of beta-gamma (β–γ) alloys. In: Proceedings of Ti-2007 Science and Technology. Sendai; 2007. 1021.

  15. Kremmer S, Chladil HF, Clemens H, Otto A, Güther V. Near conventional forging of titanium aluminides. In: Proceedings of Ti-2007 Science and Technology. Sendai; 2007. 989.

  16. Hu D, Jiang H, Wu X. Microstructure and tensile properties of cast Ti–44Al–4Nb–4Hf–0.1Si–0.1B alloy with refined lamellar microstructures. Intermetallics. 2009;17(9):744.

    Article  Google Scholar 

  17. Larson DJ, Liu CT, Miller MK. Boron solubility and boride compositions in α2+γ titanium aluminides. Intermetallics. 1997;5(6):411.

    Article  Google Scholar 

  18. Hecht U, Witusiewicz V, Drevermann A, Zollinger J. Grain refinement by low boron additions in niobium-rich TiAl alloys. Intermetallics. 2008;16(8):969.

    Article  Google Scholar 

  19. Yang C, Jiang H, Hu D, Huang A, Dixon M. Effect of boron concentration on phase transformation texture in as-solidified Ti44Al8NbxB. Scr Mater. 2012;67(1):85.

    Article  Google Scholar 

  20. Cagran C, Wilthan B, Pottlacher G, Roebuck B, Wickins M, Harding RA. Thermophysical properties of a Ti–44%Al–8%Nb–1%B alloy in the solid and molten states. Intermetallics. 2003;11(11–12):1327.

    Article  Google Scholar 

  21. Witusiewicz VT, Bondar AA, Hecht U, Zollinger J, Artyukh LV, Velikanova TY. The Al–B–Nb–Ti system V. Thermodynamic description of the ternary system Al–B–Ti. J Alloys Compd. 2009;474(1–2):86.

    Article  Google Scholar 

  22. Bermingham MJ, McDonald SD, Dargusch MS, StJohn DH. Grain-refinement mechanisms in titanium alloys. J Mater Res. 2008;23(1):97.

    Article  Google Scholar 

  23. Easton M, StJohn DH. Grain refinement of aluminum alloys: part I. The nucleant and solute paradigms—a review of the literature. Metall Mater Trans A. 1999;30A:1613.

    Article  Google Scholar 

  24. Hu D, Yang C, Huang A, Dixon M, Hecht U. Solidification and grain refinement in Ti45Al2Mn2Nb1B. Intermetallics. 2012;22:68.

    Article  Google Scholar 

  25. Cheng TT. The mechanism of grain refinement in TiAl alloys by boron addition—an alternative hypothesis. Intermetallics. 2000;8(1):29.

    Article  Google Scholar 

  26. Gosslar D, Hartig C, Günther R, Hecht U, Bormann R. Heterogeneous nucleation and growth of the β(Ti) phase in the Ti–Al system—experiments and model calculations. J Phys Condens Matter. 2009;21(46):464111.

    Article  Google Scholar 

  27. Gosslar D, Günther R, Hecht U, Hartig C, Bormann R. Grain refinement of TiAl-based alloys: the role of TiB2 crystallography and growth. Acta Mater. 2010;58(20):6744.

    Article  Google Scholar 

  28. Inkson BJ, Boothroyd CB, Humphreys CJ. Boron segregation in a (Fe, V, B) TiAl based alloy. Le Journal de Physique IV. 1993;3(C7):397.

    Google Scholar 

  29. Kitkamthorn U, Zhang LC, Aindow M. The structure of ribbon borides in a Ti–44Al–4Nb–4Zr–1B alloy. Intermetallics. 2006;14(7):759.

    Article  Google Scholar 

  30. Godfrey AB. Grain refinement of a gamma-based titanium aluminide using microalloy additions. Birmingham: University of Birmingham; 1996. 1.

    Google Scholar 

  31. Okamoto H. Ti-Al phase diagram. J. Phase. Equilibria. 1993;14(1):120.

    Article  Google Scholar 

  32. Imayev RM, Imayev VM, Oehring M, Appel F. Alloy design concept for refined gamma titanium aluminide based alloys. Intermetallics. 2007;15(4):451.

    Article  Google Scholar 

  33. Burgers WG. On the process of transition of the cubic-body-centered modification into the hexagonal-close-packed modification of zirconium. Physica. 1934;1:561.

    Article  Google Scholar 

  34. Hu D, Yang C, Huang A, Dixon M, Hecht U. Grain refinement in beta-solidifying Ti44Al8Nb1B. Intermetallics. 2012;23:49.

    Article  Google Scholar 

  35. Kartavykh AV, Gorshenkov MV, Podgorny DA. Grain refinement mechanism in advanced gamma-TiAl boron-alloyed structural intermetallics: the direct observation. Mater Lett. 2015;142:294.

    Article  Google Scholar 

  36. Hu D, Wu X. Tensile ductility of cast TiAl alloys. Mater Sci Forum. 2010;638–642(1–4):1336.

    Article  Google Scholar 

  37. Chen CL, Lu W, Lin JP, He LL, Chen GL, Ye HQ. Orientation relationship between TiB precipitate and γ-TiAl phase. Scr Mater. 2007;56(6):441.

    Article  Google Scholar 

  38. Wang Y, Wang JN, Yang J, Zhang B. Control of a fine-grained microstructure for cast high-Cr TiAl alloys. Mater Sci Eng A. 2005;392(1–2):235.

    Article  Google Scholar 

  39. Chen GL, Zhang WJ, Liu ZC, Li SL, Kim Y-W. Microstructure and properties of high-Nb containing TiAl-based alloys. In: Proceedings of Gamma Titanium Aluminides 1999. San Diego; 1999. 371.

  40. Huang ZW. Inhomogeneous microstructure in highly alloyed cast TiAl-based alloys, caused by microsegregation. Scr Mater. 2005;52(10):1021.

    Article  Google Scholar 

  41. Hyman ME, McCullough C, Levi CG, Mehrabian R. Evolution of boride morphologies in TiAl–B alloys. Metall Trans A. 1991;22A:1647.

    Article  Google Scholar 

  42. Witusiewicz VT, Bondar AA, Hecht U, Velikanova TY. The Al–B–Nb–Ti system IV. Experimental study and thermodynamic re-evaluation of the binary Al–Nb and ternary Al–Nb–Ti systems. J Alloys Compd. 2009;472(1–2):133.

    Article  Google Scholar 

  43. Campbell J. Castings. 2nd ed. Oxford: Elsevier Butterworh-Heinemann; 2003. 70.

    Book  Google Scholar 

  44. Zhang J. High Nb content TiAl Alloys Specified to Cast Process. Report at ISGTA 2014, TMS. San Diego; 2014.

  45. Hu D. Effect of boron addition on tensile ductility in lamellar TiAl alloys. Intermetallics. 2002;10(9):851.

    Article  Google Scholar 

  46. Hu D, Mei JF, Wickins M, Harding RA. Microstructure and tensile properties of investment cast Ti–46Al–8Nb–1B alloy. Scr Mater. 2002;47(4):273.

    Article  Google Scholar 

  47. De Graef M, Löfvander JPA, McCullough C, Levi CG. The evolution of metastable Bf borides in a Ti–Al–B alloy. Acta Metall Mater. 1992;40(12):3395.

    Article  Google Scholar 

  48. Kartavykh AV, Gorshenkov MV, Podgorny DA. On the state of boride precipitates in grain refined TiAl-based alloys with high Nb content. J Alloys Compd. 2014;586(S1):S153.

    Article  Google Scholar 

  49. Hu D, Huang A, Jiang H, Mota-Solis N, Wu X. Pre-yielding and pre-yield cracking in TiAl-based alloys. Intermetallics. 2006;14(1):82.

    Article  Google Scholar 

  50. Chan KS, Kim Y-W. Effects of lamellae spacing and colony size on the fracture resistance of a fully-lamellar TiAl alloy. Acta Metall Mater. 1995;43(2):439.

    Article  Google Scholar 

  51. Fuch GE. Homogenization and hot working of Ti–48Al–2Nb–2Cr alloys. In: Proceedings of Structural Intermetallics. Champion; 1993. 193.

  52. Hu D, Blenkinsop PA, Loretto MH. Alpha phase decomposition during continuous cooling in Ti48Al2Cr2Mn with and without boron addition. In: Proceedings of Titaium’99: Science and Technology. St Petersburg; 1999. 290.

  53. Godfrey AB, Hu D, Loretto MH. Thermal stability and properties of lamellar and duplex TiAl-based alloys. In: Proceedings of International Symposium on Designing, Processing and Properties of Advanced Engineering Materials. Toyohashi; 1997. 37.

  54. Chan KS, Shin DS. Fundamental aspects of fatigue and fracture in a TiAl sheet alloy. Metall Mater Trans A. 1998;29A:73.

    Article  Google Scholar 

  55. Oehring M, Stark A, Paul JDH, Lippmann T, Pyczak F. Microstructural refinement of boron-containing β-solidifying γ-titanium aluminide alloys through heat treatments in the β phase field. Intermetallics. 2013;32:12.

    Article  Google Scholar 

  56. Couret A, Molénat G, Galy J, Thomas M. Microstructures and mechanical properties of TiAl alloys consolidated by spark plasma sintering. Intermetallics. 2008;16(9):1134.

    Article  Google Scholar 

  57. Luo JS, Voisin T, Monchoux JP, Couret A. Refinement of lamellar microstructures by boron incorporation in GE–TiAl alloys processed by spark plasma sintering. Intermetallics. 2013;36:12.

    Article  Google Scholar 

  58. Habel U, McTiernan BJ. HIP temperature and properties of a gas-atomized γ-titanium aluminide alloy. Intermetallics. 2004;12(1):63.

    Article  Google Scholar 

  59. Yang C, Hu D, Wu X, Huang A, Dixon M. Microstructures and tensile properties of hot isostatic pressed Ti4522XD powders. Mater Sci Eng A. 2012;534:268.

    Article  Google Scholar 

  60. Larson DJ, Liu CT, Miller MK. The alloying effects of tantalum on the microstructure of an α2+γ titanium aluminide. Mater Sci Eng A. 1999;270(1):1.

    Article  Google Scholar 

  61. Yang C, Hu D, Wu X, Huang A, Dixon M. The influence of cooling rate and alloy composition on the formation of borides during solidification of boron-containing TiAl alloys. In: Proceedings of Ti-2011. Beijing; 2012. 1416.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dawei Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, D. Role of boron in TiAl alloy development: a review. Rare Met. 35, 1–14 (2016). https://doi.org/10.1007/s12598-015-0615-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-015-0615-1

Keywords

Navigation