Skip to main content
Log in

Fabrication and characterization of superconducting RSFQ circuits

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

To meet the specification of the qubits in our laboratory, a 0.4 kA·cm−2 superconducting rapid single flux quantum (RSFQ) circuit was designed and successfully fabricated with an improved Nb-based self-aligned lift-off process. This circuit consists of a single-flux-quantum (SFQ) pulse generator, a Josephson transmission line (JTL) and a T-flip flop (TFF), and it acts as a frequency divider. The values of the inductors in this circuit were extracted using InductEX and the basic function of this circuit was confirmed using the simulation software WRspice before fabrication. After fabrication, the basic parameters of this circuit were measured at ~ 2.5 K in a Janis He-3 cryostat. This work laid the theoretical and experimental basis for the future research on the RSFQ-qubit control circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ristè D, Bultink C, Lehnert K, DiCarlo L. Feedback control of a solid-state qubit using high-fidelity projective measurement. Phys Rev Lett. 2012;109(24):240502.

    Article  Google Scholar 

  2. Devoret M, Schoelkopf R. Superconducting circuits for quantum information: an outlook. Science. 2013;339(6124):1169.

    Article  Google Scholar 

  3. Reed M, DiCarlo L, Nigg S, Sun L, Frunzio L, Girvin S, Schoelkopf R. Realization of three-qubit quantum error correction with superconducting circuits. Nature. 2012;482(7385):382.

    Article  Google Scholar 

  4. Neeley M, Bialczak RC, Lenander M, Lucero E, Mariantoni M, O’Connell A, Sank D, Wang H, Weides M, Wenner J. Generation of three-qubit entangled states using superconducting phase qubits. Nature. 2010;467(7315):570.

    Article  Google Scholar 

  5. DiCarlo L, Reed M, Sun L, Johnson B, Chow J, Gambetta J, Frunzio L, Girvin S, Devoret M, Schoelkopf R. Preparation and measurement of three-qubit entanglement in a superconducting circuit. Nature. 2010;467(7315):574.

    Article  Google Scholar 

  6. Likharev KK. Ultrafast superconductor digital electronics: RSFQ technology roadmap. Czech J Phys. 1996;46(6):3331.

    Article  Google Scholar 

  7. Semenov VK, Averin DV. SFQ control circuits for Josephson junction qubits. IEEE Trans Appl Supercond. 2003;13(2):960.

    Article  Google Scholar 

  8. Ohki TA, Wulf M, Ocko MF. Picosecond on-chip qubit control circuitry. IEEE Trans Appl Supercond. 2005;15(2):837.

    Article  Google Scholar 

  9. Castellano MG, Chiarello F, Leoni R, Torrioli G, Carelli P, Cosmelli C, Khabipov M, Zorin AB, Balashov D. Rapid single-flux quantum control of the energy potential in a double SQUID qubit circuit. Supercond Sci Technol. 2007;20(6):500.

    Article  Google Scholar 

  10. Yamanashi Y, Asano T, Yoshikawa N. On-chip microwave generator for manipulation of superconductive quantum bits. Physica C-Supercond Appl. 2006;445(1):967.

    Article  Google Scholar 

  11. Matsuda G, Yamanashi Y, Yoshikawa N. Design of an SFQ microwave chopper for controlling quantum bits. IEEE Trans Appl Supercond. 2007;17(2):146.

    Article  Google Scholar 

  12. Miura S, Takeuchi N, Yamanashi Y, Yoshikawa N. Implementation of SFQ microwave choppers for controlling quantum bits. Phys. Procedia. 2012;36:250.

    Article  Google Scholar 

  13. Averin DV, Rabenstein K, Semenov VK. Rapid ballistic readout for flux qubits. Phys Rev B. 2006;73(9):12.

    Article  Google Scholar 

  14. Fedorov A, Shnirman A, Schon G. Reading out the state of a flux qubit by Josephson transmission line solitons. Phys Rev B. 2007;75(22):2288.

    Article  Google Scholar 

  15. Herr A, Fedorov A, Shnirman A, Il’ichev E, Schon G. Design of a ballistic fluxon qubit readout. Supercond Sci Technol. 2007;20(11):450.

    Article  Google Scholar 

  16. Fedorov KG, Shcherbakova AV, Wolf MJ, Beckmann D, Ustinov AV. Fluxon readout of a superconducting qubit. Phys Rev Lett. 2014;112(16):160502.

    Article  Google Scholar 

  17. Wulf M, Zhou XX, Habif JL, Rott P, Bocko MF, Feldman MJ. An unshunted comparator as a device for quantum measurements. IEEE Trans Appl Supercond. 2003;13(2):974.

    Article  Google Scholar 

  18. Ohki TA, Wulf M, Feldman MJ, Bocko MF. Unshunted QOS comparator for qubit readout. J Phys Conf Ser. 2006;43(1):1413.

    Article  Google Scholar 

  19. Savin AM, Pekola JP, Holmqvist T, Hassel J, Gronberg L, Helisto P, Kidiyarova-Shevchenko A. High-resolution superconducting single-flux quantum comparator for sub-Kelvin temperatures. Appl Phys Lett. 2006;89(13):3.

    Article  Google Scholar 

  20. Ohki TA, Savin A, Hassel J, Groenberg L, Karminskaya T, Kidiyarova-Shevchenko A. Balanced comparator for RSFQ qubit readout. IEEE Trans Appl Supercond. 2007;17(2):128.

    Article  Google Scholar 

  21. Walls TJ, Averin DV, Likharev KK. Josephson junction comparator as a quantum-limited detector for flux qubit readout. IEEE Trans Appl Supercond. 2007;17(2):136.

    Article  Google Scholar 

  22. Chen W, Rylyakov AV, Patel V, Lukens JE. Rapid single flux quantum T-flip flop operating up to 770 GHz. IEEE Trans Appl Supercond. 1999;9(2):3212.

    Article  Google Scholar 

  23. Dorojevets M, Ayala CL, Kasperek AK. Data-flow microarchitecture for wide datapath RSFQ processors: design study. IEEE Trans Appl Supercond. 2011;21(3):787.

    Article  Google Scholar 

  24. Bunyk P, Leung M, Spargo J, Dorojevets M. FLUX-1 RSFQ microprocessor: physical design and test results. IEEE Trans Appl Supercond. 2003;13(2):433.

    Article  Google Scholar 

  25. Nakajima N, Matsuzaki F, Yamanashi Y, Yoshikawa N, Tanaka M, Kondo T, Fujimaki A, Terai H, Yorozu S. Design and implementation of circuit components of the SFQ microprocessor, CORE1. Supercond Sci Technol. 2004;17(3):301.

    Article  Google Scholar 

  26. Fujimaki A, Tanaka M, Yamada T, Yamanashi Y, Park H, Yoshikawa N. Bit-serial single flux quantum microprocessor CORE. IEICE Trans Electron. 2008;E91C(3):342.

    Article  Google Scholar 

  27. Li H, Li G, Liu JS, Li TF, Chen W. Parametric characterization and macroscopic quantum tunneling of Nb/AlOx/Nb Josephson junctions. IEEE Trans Appl Supercond. 2014;24(5):1.

    Article  Google Scholar 

  28. Li G, Li H, Liu QC, Zhao H, Zhang YS, Liu JS, Li TF, Chen W. Characterization of a superconducting flux qubit. Cryog Supercond. 2014;42(10):1.

    Google Scholar 

  29. Li H, Liu JS, Zhang YS, Cai H, Li G, Liu QC, Han SY, Chen W. Principle and experimental investigation of current-driven negative-inductance superconducting quantum interference device. Supercond Sci Technol. 2017;30(3):035012.

    Article  Google Scholar 

  30. Fourie CJ, Wetzstein O, Ortlepp T, Kunert J. Three-dimensional multi-terminal superconductive integrated circuit inductance extraction. Supercond Sci Technol. 2011;24(12):12.

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the Natural Science Foundation of China (No. 60836001), the State Key Program for Basic Research of China (No. 2011CBA00304) and the Tsinghua University Initiative Scientific Research Program (No. 20131089314). Gang Li and Hao Li would like to thank Zhejiang Tianjingsheng Foundation, China, for student assistantships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, G., Li, H., Liu, JS. et al. Fabrication and characterization of superconducting RSFQ circuits. Rare Met. 38, 899–904 (2019). https://doi.org/10.1007/s12598-018-1109-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-018-1109-8

Keywords

Navigation