Skip to main content
Log in

Isothermal oxidation behavior of scandium and yttrium co-doped B2-type iron–aluminum intermetallics at elevated temperature

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

B2 FeAl intermetallic compounds modified with reactive elements (REs) including Sc and Y were fabricated by vacuum arc-melting, and the isothermal oxidation behavior of the RE-doped alloys at 1373 K was investigated. Both Sc and Y single-doping significantly decrease the alumina film growth rate of the alloys. The alumina film growth rate of Sc + Y co-doped alloy even further reduces compared to that of the Sc and Y single-doped alloys. The synergistic effect produced by Sc + Y co-doping on the growth behavior of alumina was discussed. It could be anticipated that the combined additions of Sc and Y which have matched chemical properties might decrease the alumina film growth rate more effectively and provide FeAl alloys with enhanced oxidation resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ruan Y, Yan N, Zhu HZ, Zhou K, Wei B. Thermal performance determination of binary Fe–Al alloys at elevated temperatures. J Alloys Compd. 2017;701:676.

    Article  Google Scholar 

  2. Ohtsu N, Nomura A, Oku M, Shishido T, Wagatsuma K. X-ray photoelectron spectroscopic studies on oxidation behavior of nickel and iron aluminides under oxygen atmosphere at low pressures. Appl Surf Sci. 2008;254:5336.

    Article  Google Scholar 

  3. Zhang ZX, Li XY, Dong HS. Plasma-nitriding and characterization of FeAl40 iron aluminide. Acta Mater. 2015;86:341.

    Article  Google Scholar 

  4. Airiskallio E, Nurmi E, Heinonen MH, Väyrynen IJ, Kokko K, Ropo M, Punkkinen MPJ, Pitkänen H, Alatalo M, Kollár J, Johansson B, Vitos L. High temperature oxidation of Fe–Al and Fe–Cr–Al alloys: the role of Cr as a chemically active element. Corros Sci. 2010;52:3394.

    Article  Google Scholar 

  5. Brito P, Pinto H, Kostka A. The crystallographic template effect assisting the formation of stable α-Al2O3 during low temperature oxidation of Fe–Al alloys. Corros Sci. 2016;105:100.

    Article  Google Scholar 

  6. Guilemany JM, Cinca N, Dosta S, Cano IG. FeAl and NbAl3 intermetallic-HVOF coatings: structure and properties. J Therm Spray Technol. 2009;18:536.

    Article  Google Scholar 

  7. Lang FQ, Yu ZM, Gedevanishvili S, Deevi SC, Narita T. Cyclic oxidation behavior of Fe–40Al sheet. Intermetallics. 2004;12:451.

    Article  Google Scholar 

  8. Liu CT, George EP, Maziasz PJ, Schneibel JH. Recent advances in B2 iron aluminide alloys: deformation, fracture and alloy design. Mater Sci Eng A. 1998;258:84.

    Article  Google Scholar 

  9. Deevi SC, Sikka VK, Liu CT. Processing, properties, and applications of nickel and iron aluminides. Prog Mater Sci. 1997;42:177.

    Article  Google Scholar 

  10. DeVan JH, Tortorelli PF. The oxidation-sulfidation behavior of iron alloys containing 16–40 at% aluminum. Corros Sci. 1993;35:1065.

    Article  Google Scholar 

  11. Hou PY, Moskito J. Sulfur segregation to Al2O3–FeAl interfaces studied by field emission-Auger electron spectroscopy. Oxid Met. 2003;59(5):559.

    Article  Google Scholar 

  12. Xu CH, Gao W, Gong H. Oxidation behaviour of FeAl intermetallics. The effects of Y and/or Zr on isothermal oxidation kinetics. Intermetallics. 2000;8:769.

    Article  Google Scholar 

  13. Pint BA. Progress in understanding the reactive element effect since the Whittle and Stringer literature review. In: Proceedings of John Stringer Symposium on High Temperature Corrosion, ASM International; Novelty; 2003.9.

  14. Whittle DP, Stringer J. Improvements in high temperature oxidation resistance by additions of reactive elements or oxide dispersions. Philos Trans R Soc Lond Ser A. 1980;295:309.

    Article  Google Scholar 

  15. Wang L, Pan LL, Peng H, Guo HB, Gong SK. Cyclic oxidation behavior of Cr-/Si-modified NiAlHf coatings on single-crystal superalloy produced by EB-PVD. Rare Met. 2016;35(5):396.

    Article  Google Scholar 

  16. Yan K, Guo HB, Peng H, Gong SK. Oxidation behaviour of electron beam physical vapour deposition β-NiAlHf coatings at 1100 °C in dry and humid atmospheres. Rare Met. 2016;35(7):513.

    Article  Google Scholar 

  17. Xu CH, Gao W, Li S. Oxidation behaviour of FeAl intermetallics—the effect of Y on the scale spallation resistance. Corros Sci. 2001;43:671.

    Article  Google Scholar 

  18. Wang HF, Zhang YD, Shahzad S, Liu WB, Yang ZG, Zhang C. High temperature oxidation performance of CoNiCrAl alloy with different Sc contents. Chin J Rare Met. 2016;40(9):857.

    Google Scholar 

  19. Xu CH, Gao W. Oxidation behaviour of FeAl intermetallics: effects of reactive elements on cyclic oxidation properties. Mater Sci Technol. 2001;17(3):324.

    Article  Google Scholar 

  20. Li DQ, Guo HB, Peng H, Gong SK, Xu HB. Improved alumina scale adhesion of electron beam physical vapor deposited Dy/Hf-doped β-NiAl coatings. Appl Surf Sci. 2013;283:513.

    Article  Google Scholar 

  21. Carling KM, Carter EA. Effects of segregating elements on the adhesive strength and structure of the α-Al2O3/β-NiAl interface. Acta Mater. 2007;55:2791.

    Article  Google Scholar 

  22. Heuer AH, Hovis DB, Smialek JL, Gleeson B. Alumina scale formation: a new perspective. J Am Ceram Soc. 2011;94(S):146.

    Article  Google Scholar 

  23. Pint BA. Experimental observations in support of the dynamic-segregation theory to explain the reactive-element effect. Oxid Met. 1996;45(1/2):1.

    Article  Google Scholar 

  24. Janda D, Fietzek H, Galetz M, Heilmaier M. The effect of micro-alloying with Zr and Nb on the oxidation behavior of Fe3Al and FeAl alloys. Intermetallics. 2013;41:51.

    Article  Google Scholar 

  25. Pint BA, Alexander KB. Grain boundary segregation of cation dopants in α-Al2O3 scales. J Electrochem Soc. 1998;145(6):1819.

    Article  Google Scholar 

  26. Pint BA, More KL, Wright IG. The use of two reactive elements to optimize oxidation performance of alumina-forming alloys. Mater High Temp. 2003;20(3):375.

    Article  Google Scholar 

  27. Li DQ, Guo HB, Wang D, Zhang T, Gong SK, Xu HB. Cyclic oxidation of β-NiAl with various reactive element dopants at 1200°C. Corros Sci. 2013;66:125.

    Article  Google Scholar 

  28. Lan H, Zhang WG, Yang ZG. Investigation of Pt–Dy co-doping effects on isothermal oxidation behavior of (Co, Ni)-based alloy. J Rare Earths. 2012;30(9):928.

    Article  Google Scholar 

  29. Guo HB, Li DQ, Zheng L, Gong SK, Xu HB. Effect of co-doping of two reactive elements on alumina scale growth of β-NiAl at 1200°C. Corros Sci. 2014;88:197.

    Article  Google Scholar 

  30. Zhang YD, Zhang C, Wang HF, Yang ZG. Oxidation behaviour of CoNiCrAlY at 1000°C with Ce and Re additions. Chin J Rare Met. 2016;40(5):409.

    Google Scholar 

  31. Pint BA, More KL, Tortorelli PF. Optimizing the imperfect oxidation performance of iron aluminides. Mater Sci Forum. 2001;369–372(1):411.

    Article  Google Scholar 

  32. Zheng YB, Wang F, Ai TT, Li C. Structural, elastic and electronic properties of B2-type modified by ternary additions FeAl-based intermetallics: first-principles study. J Alloys Compd. 2017;710:581.

    Article  Google Scholar 

  33. Pint BA. The oxidation behavior of Y2O3-dispersed β-NiAl. Oxid Met. 2004;61(3/4):273.

    Article  Google Scholar 

  34. Nowak K, Kupka M. High-temperature oxidation behaviour of B2 FeAl based alloy with Cr, Zr and B additions. Mater Chem Phys. 2012;132:902.

    Article  Google Scholar 

  35. Monceau D, Pieraggi B. Determination of parabolic rate constants from a local analysis of mass-gain curves. Oxid Met. 1998;50(5/6):477.

    Article  Google Scholar 

  36. Pint BA, Martin JR, Hobbs LW. 18O/SIMS characterization of the growth mechanism of doped and undoped α-Al2O3. Oxid Met. 1993;39(3/4):167.

    Article  Google Scholar 

  37. Mennicke C, He MY, Clarke DR, Smith JS. The role of secondary oxide inclusions (“pegs”) on the spallation resistance of oxide films. Acta Mater. 2000;48:2941.

    Article  Google Scholar 

  38. Guo HB, Zhang T, Wang SX, Gong SK. Effect of Dy on oxide scale adhesion of NiAl coatings at 1200°C. Corros Sci. 2011;53:2228.

    Article  Google Scholar 

  39. Cotell CM, Yurek GJ, Hussey RJ, Mitchell DF, Graham MJ. The influence of grain-boundary segregation of Y in Cr2O3 on the oxidation of Cr metal. Oxid Met. 1990;34(3/4):173.

    Article  Google Scholar 

  40. Cotell CM, Yurek GJ, Hussey RJ, Mitchell DF, Graham MJ. The influence of grain-boundary segregation of Y in Cr2O3 on the oxidation of Cr metal. II. Effects of temperature and dopant concentration. Oxid Met. 1990;34(3/4):201.

    Article  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the Basic Research Program of State Grid (No. GCB17201500188).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Qing Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, DQ., Zhou, LX., Zhu, KJ. et al. Isothermal oxidation behavior of scandium and yttrium co-doped B2-type iron–aluminum intermetallics at elevated temperature. Rare Met. 37, 690–698 (2018). https://doi.org/10.1007/s12598-018-1091-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-018-1091-1

Keywords

Navigation