Skip to main content
Log in

On the Role of Yttrium in Alumina Formers: Comparative Oxidation Behavior of (Ni–Cr–Al)- and (Ni–Cr–Al–Y)-Based Alloys

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

It is shown that the addition of Y to an alloy based upon the Ni–Cr–Al system slightly reduces the growth rate of Al2O3 scale during isothermal oxidation in air at temperatures in the range of 950–1150 °C. However, Y segregation at grain boundaries of the oxide is found to refine its grain structure down to the nanoscale with improved mechanical strength as compared to the Y-free alloy. It is concluded that Y can have the effect of decelerating the kinetics of diffusion processes leading to grain growth of the oxide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. E. Opila, The Electrochemical Society Interface 22, 69 (2013).

    Google Scholar 

  2. B. A. Billingham, C. H. Lee, L. Smith, M. Haines, S. R. James, B. K. W. Goh, K. Dvorak, L. Robinson, C. J. Davis and D. P. Solorio, Energy Procedia 4, 2020 (2011).

    Article  Google Scholar 

  3. H. M. Tawancy, Oxidation of Metals 83, 167 (2015).

    Article  Google Scholar 

  4. R. B. Herchenroeder, G. Y. Lai and K. V. Rao, Journal of Metals 35, 16 (1983).

    Google Scholar 

  5. D. P. Whittle and J. Stringer, Philosophical Transactions of the Royal Society A295, 309 (1980).

    Article  Google Scholar 

  6. K. P. R. Reddy, J. L. Smialek and A. R. Cooper, Oxidation of Metals 17, 429 (1982).

    Article  Google Scholar 

  7. E. W. A. Young and J. H. W. de Wit, Oxidation of Metals 26, 351 (1986).

    Article  Google Scholar 

  8. J. L. Smialek, Corrosion Science 91, 281 (2015).

    Article  Google Scholar 

  9. F. H. Stott, in The role of active elements in the oxidation behavior of high temperature metals and alloys, ed. E. Lang (Elsevier Applied Science, London, 1989), p. 3.

    Chapter  Google Scholar 

  10. H. M. Tawancy, Metallurgical Transactions A 22A, 1463 (1991).

    Article  Google Scholar 

  11. L. V. Ramanathan, Corrosion Science 35, 871 (1993).

    Article  Google Scholar 

  12. T. A. Ramanarayanan, R. Ayer, R. Petkovic-Luton and D. P. Leta, Oxidation of Metals 29, 445 (1988).

    Article  Google Scholar 

  13. T. A. Ramanarayanan, M. Raghavan and R. Petkovic-Luton, Oxidation of Metals 22, 83 (1984).

    Article  Google Scholar 

  14. T. A. Ramanarayanan, M. Raghavan and R. Petkovic-Luton, Journal of the Electrochemical Society 131, 923 (1984).

    Article  Google Scholar 

  15. J. Stringer, Materials Science and Engineering A 120, 129 (1989).

    Article  Google Scholar 

  16. A. M. Huntz, in The Role of Active Elements in the Oxidation Behavior of High Temperature Metals and Alloys, ed. E. Lang (Elsevier Applied Science, London, 1989), p. 81.

    Chapter  Google Scholar 

  17. A. H. Heuer, M. Z. Zahiri, H. Guhl, M. Foulkes, B. Gleeson, T. Nakagawa, Y. Ikuhara and M. W. Finnis, Journal of the American Ceramic Society 99, 733 (2016).

    Article  Google Scholar 

  18. A. H. Heuer, T. Nakagawa, M. Z. Azar, D. B. Hovis, J. L. Smialek, B. Gleeson, N. D. M. Hine, H. Guhl, H. S. Lee, P. Tangney, W. M. C. Foulkes and W. M. Finnis, Acta Materialia 61, 6670 (2013).

    Article  Google Scholar 

  19. A. H. Heuer, D. B. Hovis, J. L. Smialek and B. Gleeson, Journal of the American Ceramic Society 94, s146 (2011).

    Article  Google Scholar 

  20. R. Prescott and M. J. Graham, Oxidation of Metals 38, 233 (1992).

    Article  Google Scholar 

  21. H. Hindam and D. P. Whittle, Oxidation of Metals 18, 245 (1982).

    Article  Google Scholar 

  22. A. Chyrkin, N. Mortazavi, M. Halvarsson, D. Gruner and W. J. Quadakkers, Corrosion Science 98, 688 (2015).

    Article  Google Scholar 

  23. D. J. Young, A. Chyrkin, J. He, D. Gruner and W. J. Quadakkers, Oxidation of Metals 79, 405 (2013).

    Article  Google Scholar 

  24. V. P. Deodeshmukh, Oxidation of Metals 79, 567 (2013).

    Article  Google Scholar 

  25. V. P. Deodeshmukh and S. K. Srivastava, Superalloys. in The minerals, metals and materials society, eds. R. C. Reed, K. A. Green and P. Carron (Warrendale, Pennsylvania, 2008), p. 689.

    Google Scholar 

  26. Y. Wang, Y. Liu, H. Tang and W. Li, Materials Characterization 107, 283 (2015).

    Article  Google Scholar 

  27. P. J. Goodhew, J. Humphreys and R. Beanland, Electron microscopy and analysis, 3rd ed, (Taylor and Francis, New York, 2002).

    Google Scholar 

  28. D. R. Vij, Handbook of applied solid state spectroscopy, (Springer, New York, 2006).

    Book  Google Scholar 

  29. E. A. Gulbransen and K. F. Andrew, Journal of the Electrochemical Society 101, 128 (1954).

    Article  Google Scholar 

  30. M. W. Brumm and H. J. Grabke, Corrosion Science 33, 1677 (1992).

    Article  Google Scholar 

  31. G. S. Giggins and F. S. Pettit, Transactions of the Metallurgical Society of AIME 245, 2495 (1969).

    Google Scholar 

  32. J. D. Kuenzly and D. L. Douglass, Oxidation of Metals 8, 139 (1974).

    Article  Google Scholar 

  33. A. Kumar, M. Hasrallah and D. L. Douglass, Oxidation of Metals 8, 227 (1974).

    Article  Google Scholar 

  34. F. S. Pettit, C. S. Giggins, J. A. Goebel and E. J. Felten, in Alloys and microstructural design, eds. J. K. Tien and G. S. Ansell (Academic Press, New York, 1976), p. 349.

    Chapter  Google Scholar 

  35. J. R. Nicholls and P. Hancock, in The role of active elements in the oxidation behavior of high temperature metals and alloys, ed. E. Lang (Elsevier, London, 1989), p. 195.

    Chapter  Google Scholar 

  36. J. Jedlinski, in The role of active elements in the oxidation behavior of high temperature metals and alloys, ed. E. Lang (Elsevier, London, 1989), p. 131.

    Chapter  Google Scholar 

  37. A. N. Aleshin, Russian Metallurgy 2008, 286 (2008).

    Article  Google Scholar 

  38. V. Yamakov, D. Moldovan, K. Rastogi and D. Wolf, Acta Materialia 54, 4053 (2006).

    Article  Google Scholar 

Download references

Acknowledgments

The author is grateful for the continued support provided by King Fahd University of Petroleum and Minerals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. M. Tawancy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tawancy, H.M. On the Role of Yttrium in Alumina Formers: Comparative Oxidation Behavior of (Ni–Cr–Al)- and (Ni–Cr–Al–Y)-Based Alloys. Oxid Met 86, 371–383 (2016). https://doi.org/10.1007/s11085-016-9642-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-016-9642-z

Keywords

Navigation