Skip to main content
Log in

Flow behavior and microstructural evolution in nickel during hot deformation

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The hot deformation behavior of pure nickel with coarse, columnar grains in the temperature range of 950–1150 °C at intervals of 50 °C and in the strain rate range of 0.001–10.000 s−1 at intervals of one order of magnitude was investigated by isothermal hot compressive testing with the compression ratio of 70%. The results reveal that the strain rate and the temperature strongly affect the flow stress during hot deformation and that flow stress increases with the increase in strain rate while decreases with temperature increasing. Moreover, the relationship among flow stress, strain rate and temperature can be represented by the Zener–Hollomon parameter with the calculated apparent activation energy of 312.403 kJ·mol−1, and the variation of activation energy is sensitive to strain rate rather than temperature. In addition, the dynamic recrystallization (DRX) analysis reveals that the DRX behavior of nickel is evidently affected by both deformation temperature and strain rate and that the distinct mechanisms of nucleation are the bulging of serrated grain boundaries and the development of twinning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Manonukul A, Dunne FPE. Initiation of dynamic recrystallization under inhomogeneous stress states in pure copper. Acta Mater. 1999;47(17):4339.

    Article  CAS  Google Scholar 

  2. Sommitsch C, Mitter W. On modelling of dynamic recrystallisation of fcc materials with low stacking fault energy. Acta Mater. 2006;54(2):357.

    Article  CAS  Google Scholar 

  3. Galindo-Nava EI, Rae CMF. Microstructure evolution during dynamic recrystallisation in polycrystalline nickel superalloys. Mater Sci Eng A. 2015;636(6):434.

    Article  CAS  Google Scholar 

  4. Sakai T. Dynamic recrystallization microstructures under hot working conditions. J Mater Process Technol. 1995;53(1):349.

    Article  Google Scholar 

  5. Sakai T, Ohashi M. Dislocation substructures developed during dynamic recrystallisation in polycrystalline nickel. Mater Sci Technol. 1990;6(12):1251.

    Article  CAS  Google Scholar 

  6. Chen S, Gottstein G. Dislocation structures in nickel during high temperature low cycle fatigue at large cumulative strains. J Mater Sci. 1989;24(11):4094.

    Article  CAS  Google Scholar 

  7. Luton MJ, Sellars CM. Dynamic recrystallization in nickel and nickel-iron alloys during high temperature deformation. Acta Metall. 1969;17(8):1033.

    Article  CAS  Google Scholar 

  8. Srinivasan N, Prasad Y. Characterisation of dynamic recrystallisation in nickel using processing map for hot deformation. Mater Sci Technol. 1992;8(3):206.

    Article  CAS  Google Scholar 

  9. Mataya MC. Simulating microstructural evolution during the hot working of alloy 718. JOM. 1999;51(1):18.

    Article  CAS  Google Scholar 

  10. Shen G, Semiatin SL, Shivpuri R. Modeling microstructural development during the forging of Waspaloy. Metall Mater Trans A. 1995;26(7):1795.

    Article  Google Scholar 

  11. Semiatin SL, Weaver DS, Kramb RC, Fagin PN, Glavicic MG, Goetz RL, Frey ND, Antony MM. Deformation and recrystallization behavior during hot working of a coarse-grain, nickel-base superalloy ingot material. Metall Mater Trans A. 2004;35(2):679.

    Article  Google Scholar 

  12. Hou XL, Li Y, Lv P, Cai J, Ji L, Guan QF. Hot deformation behavior and microstructure evolution of a Mg–Gd–Nd–Y–Zn alloy. Rare Met. 2016;35(7):532.

    Article  CAS  Google Scholar 

  13. Li FL, Fu R, Feng D, Tian ZL. Hot workability characteristics of Rene88DT superalloy with directionally solidified microstructuremelt-spun. Rare Met. 2015;34(1):51.

    Article  CAS  Google Scholar 

  14. Ponge D, Gottstein G. Necklace formation during dynamic recrystallization: mechanisms and impact on flow behavior. Acta Mater. 1998;46(1):69.

    Article  CAS  Google Scholar 

  15. Dudova N, Belyakov A, Sakai T, Kaibyshev R. Dynamic recrystallization mechanisms operating in a Ni–20% Cr alloy under hot-to-warm working. Acta Mater. 2010;58(10):3624.

    Article  CAS  Google Scholar 

  16. Beladi H, Cizek P, Hodgson PD. On the characteristics of substructure development through dynamic recrystallizationmelt-spun. Acta Mater. 2010;58(9):3531.

    Article  CAS  Google Scholar 

  17. Haghdadi N, Zarei-Hanzaki A, Abedi HR. The flow behavior modeling of cast A356 aluminum alloy at elevated temperatures considering the effect of strainmelt-spun. Mater Sci Eng A. 2012;535(2):252.

    Article  CAS  Google Scholar 

  18. Lin YC, Chen MS, Zhong J. Numerical simulation for stress/strain distribution and microstructural evolution in 42CrMo steel during hot upsetting processmelt-spun. Comput Mater Sci. 2008;43(4):1117.

    Article  CAS  Google Scholar 

  19. Lin YC, Xia YC, Chen XM, Chen MS. Constitutive descriptions for hot compressed 2124-T851 aluminum alloy over a wide range of temperature and strain ratemelt-spun. Comput Mater Sci. 2010;50(1):227.

    Article  CAS  Google Scholar 

  20. Zeng Z, Jonsson S, Zhang Y. Constitutive equations for pure titanium at elevated temperaturesmelt-spun. Mater Sci Eng A. 2009;505(S1–2):116.

    Article  CAS  Google Scholar 

  21. Sellars CM, McTegart WJ. On the mechanism of hot deformation. Acta Metall. 1966;14(9):1136.

    Article  CAS  Google Scholar 

  22. Salehi AR, Serajzadeh S, Yazdipour N. A study on flow behavior of A-286 superalloy during hot deformation. Mater Chem Phys. 2007;101(1):153.

    Article  CAS  Google Scholar 

  23. Han Y, Liu G, Zou D, Liu R, Qiao G. Deformation behavior and microstructural evolution of as-cast 904L austenitic stainless steel during hot compression. Mater Sci Eng A. 2013;565(10):342.

    Article  CAS  Google Scholar 

  24. Haghdadi N, Zarei-Hanzaki A, Abedi HR, Sabokpa O. The effect of thermomechanical parameters on the eutectic silicon characteristics in a non-modified cast A356 aluminum alloymelt-spun. Mater Sci Eng A. 2012;549(7):93.

    Article  CAS  Google Scholar 

  25. Rokni MR, Zarei-Hanzaki A, Roostaei AA, Abolhasani A. Constitutive base analysis of a 7075 aluminum alloy during hot compression testingmelt-spun. Mater Des. 2011;32(10):4955.

    Article  CAS  Google Scholar 

  26. Lin YC, Li QF, Xia YC, Li LT. A phenomenological constitutive model for high temperature flow stress prediction of Al–Cu–Mg alloymelt-spun. Mater Sci Eng A. 2012;534(1):654.

    Article  CAS  Google Scholar 

  27. Liu Y, Hu R, Li J, Kou H, Li H, Chang H, Fu H. Characterization of hot deformation behavior of Haynes230 by using processing maps. J Mater Process Technol. 2009;209(8):4020.

    Article  CAS  Google Scholar 

  28. Prasad Y, Sasidhara S, Sikka VK. Characterization of mechanisms of hot deformation of as-cast nickel aluminide alloy. Intermetallics. 2000;8(9):987.

    Article  CAS  Google Scholar 

  29. Ueki M, Horie S, Nakamura T. Factors affecting dynamic recrystallization of metals and alloys. Mater Sci Technol. 1987;3(5):329.

    Article  CAS  Google Scholar 

  30. Schaffer JP, Saxena A, Antolovich SD. The Science and Design of Engineering Materials. Chicago: Irwin; 1995. 864.

    Google Scholar 

  31. Wierzbinski S, Korbel A, Jonas JJ. Structural and mechanical aspects of high temperature deformation of polycrystalline nickel. Mater Sci Technol. 1992;8(2):153.

    Article  CAS  Google Scholar 

  32. Wang Y, Shao WZ, Zhen L, Yang L, Zhang XM. Flow behavior and microstructures of superalloy 718 during high temperature deformation. Mater Sci Eng A. 2008;497(1):479.

    Article  CAS  Google Scholar 

  33. Wang Y, Shao WZ, Zhen L, Zhang XM. Microstructure evolution during dynamic recrystallization of hot deformed superalloy 718melt-spun. Mater Sci Eng A. 2008;486(1):321.

    Article  CAS  Google Scholar 

  34. Wusatowska-Sarnek AM, Miura H, Sakai T. Nucleation and microtexture development under dynamic recrystallization of copper. Mater Sci Eng A. 2002;323(1):177.

    Article  Google Scholar 

  35. Li D, Guo Q, Guo S, Guo S, Peng H, Wu Z. The microstructure evolution and nucleation mechanisms of dynamic recrystallization in hot-deformed Inconel 625 superalloy. Mater Des. 2011;32(2):696.

    Article  CAS  Google Scholar 

  36. Montheillet F, Thomas JP. Dynamic Recrystallization of Low Stacking Fault Energy Metals. Netherlands: Springer; 2004. 357.

    Google Scholar 

  37. Poelt P, Sommitsch C, Mitsche S, Walter M. Dynamic recrystallization of Ni-base alloys—experimental results and comparisons with simulations. Mater Sci Eng A. 2006;420(1):306.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 51271076 and 51474101).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Li Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, WL., Lai, SZ., Teng, J. et al. Flow behavior and microstructural evolution in nickel during hot deformation. Rare Met. 38, 675–682 (2019). https://doi.org/10.1007/s12598-017-0877-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-017-0877-x

Keywords

Navigation