Skip to main content
Log in

Hot deformation behavior and microstructure evolution of a Mg–Gd–Nd–Y–Zn alloy

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The hot deformation behavior of homogenized Mg–6.5Gd–1.3Nd–0.7Y–0.3Zn alloy was investigated during compression at temperatures of 250–400 °C and at strain rates ranging from 0.001 to 0.100 s−1. Microstructure analyses show that the flow behaviors are associated with the deformation mechanisms. At the lower temperatures (250–300 °C), deformation twinning is triggered due to the difficult activation of dislocation cross-slip. Dynamic recrystallization (DRX) accompanied by dynamic precipitation occurs at the temperature of 350 °C and influences the softening behavior of the flow. DRX that develops extensively at original grain boundaries is the main softening mechanism at the high temperature of 400 °C and eventually brings a more homogeneous microstructure than that in other deformation conditions. The volume fraction of the DRXed grains increases with temperature increasing and decreases with strain rate increasing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kainer KU. Magnesium: Alloys and Technologies. Weinheim: Wiley; 2003. 1.

    Book  Google Scholar 

  2. Yang Y, Zhang K, Li XG, Li YJ, Ma ML, Shi GL, Yuan JW. Microstructure and phase transformation of as-cast and annealed Mg–4Zn–1Y alloy containing quasi-crystal phase. Rare Met. 2015;34(4):239.

    Article  Google Scholar 

  3. Hirsch J, Al-Samman T. Superior light metals by texture engineering: optimized aluminum and magnesium alloys for automotive applications. Acta Mater. 2013;61(3):818.

    Article  Google Scholar 

  4. Wu HY, Yang JC, Liao JH, Zhu FJ. Dynamic behavior of extruded AZ61 Mg alloy during hot compression. Mater Sci Eng A. 2012;535(1–2):68.

    Article  Google Scholar 

  5. Ai WJ, Fang G, Zhou J, Leeflang MA, Duszczyk J. Effect of twinning on the deformation behavior of an extruded Mg–Zn–Zr alloy during hot compression testing. Mater Sci Eng A. 2012;556(1–2):373.

    Article  Google Scholar 

  6. Yang Y, Zhang K, Ma ML, Yuan JW. Microstructure and phase compositions of as-cast Mg–3.9Zn–0.6Re (Gd, Y) alloy with different Gd/Y ratios. Rare Met. 2015;34(3):160.

    Article  Google Scholar 

  7. Homma T, Kunito N, Kamado S. Fabrication of extraordinary high-strength magnesium alloy by hot extrusion. Scr Mater. 2009;61(6):644.

    Article  Google Scholar 

  8. Hou XL, Peng QM, Cao ZY, Xu SW, Kamado S, Wang LD, Wu YM, Wang LM. Structure and mechanical properties of extruded Mg–Gd based alloy sheet. Mater Sci Eng A. 2009;520(1–2):162.

    Article  Google Scholar 

  9. Dharmendra C, Rao KP, Prasad YVRK, Hort N, Kainer KU. Hot working mechanisms and texture development in Mg–3Sn–2Ca–0.4Al alloy. Mater Chem Phys. 2012;136(2–3):1081.

    Article  Google Scholar 

  10. Humphreys FJ, Hatherly M. Recrystallization and Related Annealing Phenomena. 2nd ed. Oxford: Elsevier; 2004. 415.

    Book  Google Scholar 

  11. Sakai T, Belyakov A, Kaibyshev R, Miura H, Jonas JJ. Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions. Prog Mater Sci. 2014;60:130.

    Article  Google Scholar 

  12. Suzuki M, Kimura T, Koike J, Maruyama K. Strengthening effect of Zn in heat resistant Mg–Y–Zn solid solution alloys. Scr Mater. 2003;48(8):997.

    Article  Google Scholar 

  13. Tang N, Wang MP, Lou HF, Zhao YY, Li Z. Microstructure and texture of twin-roll cast Mg–3Al–1Zn–0.2Mn magnesium alloy. Mater Chem Phys. 2009;116(1):11.

    Article  Google Scholar 

  14. Shih HC, Ho NJ, Huang JC. Precipitation behaviors in Al–Cu–Mg and 2024 aluminum alloys. Metall Mater Trans A. 1996;27(9):2479.

    Article  Google Scholar 

  15. He SM, Zeng XQ, Peng LM, Gao X, Nie JF, Ding WJ. Precipitation in a Mg–10Gd–3Y–0.4Zr (wt%) alloy during isothermal ageing at 250 °C. J Alloys Compd. 2006;421(1–2):309.

    Article  Google Scholar 

  16. Hase K, Tsuji N. Effect of initial microstructure on ultrafine grain formation through warm deformation in medium-carbon steels. Scr Mater. 2011;65(5):404.

    Article  Google Scholar 

  17. Myshlyaev MM, McQueen HJ, Mwembela A, Konopleva E. Twinning, dynamic recovery and recrystallization in hot worked Mg–Al–Zn alloy. Mater Sci Eng A. 2002;337(1–2):121.

    Article  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the China Postdoctoral Science Foundation (No. 2013M541611), Jiangsu Province Science Foundation for Youths (No. BK20130519) and the Foundation of Jiangsu University (No. 12JDG094).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiu-Li Hou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, XL., Li, Y., Lv, P. et al. Hot deformation behavior and microstructure evolution of a Mg–Gd–Nd–Y–Zn alloy. Rare Met. 35, 532–536 (2016). https://doi.org/10.1007/s12598-015-0507-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-015-0507-4

Keywords

Navigation