Skip to main content
Log in

Hot workability characteristics of Rene88DT superalloy with directionally solidified microstructure

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The hot deformation characteristics of Rene88DT superalloy with directionally solidified microstructure produced by electroslag remelting continuous directionally solidification (ESR-CDS®) were studied in the temperature range of 1,040–1,140 °C and strain rate range of 0.001–1.000 s−1 by hot compression tests. Flow curves for Rene88DT alloy with initial directionally solidified (DS) microstructure exhibit pronounced peak stresses at the early stage of deformation followed by the occurrence of dynamic softening phenomenon. Rene88DT alloy with DS microstructure shows higher flow peak stresses compared with HIPed P/M superalloy FGH4096, but the disparities in peak stresses between ESR-CDSed Rene88DT and HIPed P/M superalloy FGH4096 reduce as temperature increases. The improvement of hot workability of DS alloy with columnar grains avoiding the maximum shear stress comes true. A hot deformation constitutive equation as a function of strain that describes the dependence of flow stress on strain rate and temperature is established. Hot deformation apparent activation energy (Q) varies not only with the strain rate and temperature but also with strain. The strain rate sensitivity exponent (m) map is established at the strain of 0.8, which reveals that global dynamic recrystallization (DRX) shows a relatively high m value in a large strain compression. Optimum parameters are predicted in two regions: T = 1,100–1,130 °C, \({\dot{\varepsilon}}\) = 0.100–1.000 s−1 and T = 1,080–1,100 °C, \({\dot{\varepsilon}}\) = 0.010–0.100 s−1, which is based on processing maps and deformation microstructure observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Reed RC. The Superalloys Fundamental and Applications. Cambridge: Cambridge University Press; 2006. 1.

    Book  Google Scholar 

  2. Sims CT, Stoloff NS, Hagel WC. Superalloys. Canada: Wiley—Interscience Press; 1987. 1.

    Google Scholar 

  3. Viswanathan GB, Sarosi PM, Whitis DH, Mills MJ. Deformation mechanism at intermediate creep temperatures in the Ni-base superalloy Rene88DT. Mater Sci Eng A. 2005;400–401:489.

    Article  Google Scholar 

  4. Huron E, Srivatsa S, Raymond E. Control of grain size via forging strain rate limits for Rene88DT. In: Proceedings of the International Symposium on Superalloys. Pennsylvania; 2000. 49.

  5. Krueger. Fatigue crack growth resistance nickel-base article and alloy method for making, US Patent. No.4957567.1990; 1990.

  6. Guo JT. Material Science and Engineering for Superalloys. Beijing: Science Press; 2008. 6.

  7. Feng D, Fu R, Chen XC. The equipment and methods of the electroslag remelting continuous directional solidification (ESR-CDS) Technology. China Patent, No.201010614036.0; 2010.

  8. Fu R, Chen XC, Feng D. The microstructure and hot deformation behavior of ESR-CDS Rene88DT alloy. J Aeronaut Mater. 2011;31(3):8.

    Google Scholar 

  9. Fu R. The Electroslag Remelting Continuous Directional Solidification (ESR-CDS) Technology Research. Postdoctor report of Central Iron & Steel Research Institute, Beijing; 2011. 1.

  10. Prasad YVRK, Gegel HL, Doraivelu SM. Modeling of dynamic materials behavior in hot deformation: forging of Ti-6242. Metall Trans A. 1984;15:1883.

  11. Wu K, Liu GQ, Hu BF, Wang CY, Zhang YW, Tao Y, Liu JT. Effect of processing parameters on hot compressive deformation behavior of a new Ni–Cr–Co based P/M superalloy. Mater Sci Eng A. 2011;528:4620.

    Article  Google Scholar 

  12. Ravichandran N, Prasad YVRK. Dynamic recrystallization during hot deformation of aluminium: a study using processing maps. Metall Trans A. 1991;22:2339.

    Article  Google Scholar 

  13. Ning YQ, Yao ZK, Li H, Guo HZ, Tao Y, Zhang YW. High temperature deformation behavior of hot isostatically pressed P/M FGH4096 superalloy. Mater Sci Eng A. 2010;527:961.

    Article  Google Scholar 

  14. Ning YQ, Yao ZK, Fu MW, Guo HZ. Dynamic recrystallization of the hot isostatically pressed P/M superalloy FGH4096 in hot working process. Mater Sci Eng A. 2010;527:6968.

    Article  Google Scholar 

  15. Zhang MJ, Li FG, Wang SY, Liu ChY. Characterization of hot deformation behavior of a P/M nickel-base superalloy using processing map and activation energy. Mater Sci Eng A. 2010;527:6771.

    Article  Google Scholar 

  16. Li L, Zhang XM. Hot compression deformation behavior and processing parameters of a cast Mg–Gd–Y–Zr alloy. Mater Sci Eng A. 2011;528:1396.

    Article  Google Scholar 

  17. Mostafaei MA, Kazeminezhad M. Hot deformation behavior of hot extruded Al–6Mg alloy. Mater Sci Eng A. 2012;535:216.

    Article  Google Scholar 

  18. Hu HY, Yang JC, Zhu FJ. Hot deformation characteristics of as-cast and homogenized AZ61 Mg alloys under compression. Mater Sci Eng A. 2012;550:273.

    Article  Google Scholar 

  19. Samantaray D, Mandal S, Bhaduri AK. Optimization of hot working parameters for thermo-mechanical processing of modified 9Cr–1Mo (P91) steel employing dynamic materials model. Mater Sci Eng A. 2011;528:5204.

    Article  Google Scholar 

  20. Li H, Li MQ, Han T. The deformation behavior of isothermally compressed Ti-17 titanium alloy in α+β field. Mater Sci Eng A. 2012;546:40.

    Article  Google Scholar 

  21. Gu Y, Zhong Z, Yuan Y. An advanced cast-and-wrought superalloy (TMW-4M3) for turbine disk applications beyond 700°C. In: Proceedings of the International Symposium on Superalloys. Pennsylvania; 2012. 903.

  22. Ning YQ, Yao ZK, Lei YY, Guo HZ, Fu MW. Hot deformation behavior of the post-cogging FGH4096 superalloy with fine equiaxed microstructure. Mater Charact. 2011;62:887.

    Article  Google Scholar 

  23. Liu JT, Liu GQ, Hu BF, Song YP, Qin ZR, Zhang YW. Hot deformation behavior of FGH4096 superalloy. J Univ Sci Technol Beijing. 2006;13(4):319.

    Article  Google Scholar 

  24. Ning YQ, Yao ZK, Yang Zh, Guo HZ, Fu MW. Flow behavior and hot workability of FGH4096 superalloys with different initial microstructures by using advanced processing maps. Mater Sci Eng A. 2012;531:91.

    Article  Google Scholar 

  25. Liu HS, Zhang L, He XB, Qu XH, Li Z, Zhang JQ. Precipitation behavior of γ′ phase in superalloy FGH96 under interrupted cooling test. Rare Met. 2013;32(6):560.

    Article  Google Scholar 

  26. Sellars CM, Tegart WJ. On the mechanisms of hot deformation. Acta Metall. 1966;14:1136.

    Article  Google Scholar 

  27. Wu HY, Zhu FJ, Wang SC, Wang WR, Wang CC, Chiu CH. Hot deformation characteristics and strain-dependent constitutive analysis of Inconel 600 superalloy. J Mater Sci. 2012;47:3971.

    Article  Google Scholar 

  28. Wu K, Liu GQ, Hu BF, Li F, Zhang YW, Tao Y, Liu JT. Characterization of hot deformation behavior of a new Ni-Cr-Co based P/M superalloy. Mater Charact. 2010;61:330.

    Article  Google Scholar 

  29. Wang Y, Shao WZ, Zhen L, Zhang XM. Flow behavior and microstructures of superalloy 718 during high temperature deformation. Mater Sci Eng A. 2008;486:321.

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Military Supporting Project (No. JPPT125GJGG11).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fu-Lin Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, FL., Fu, R., Feng, D. et al. Hot workability characteristics of Rene88DT superalloy with directionally solidified microstructure. Rare Met. 34, 51–63 (2015). https://doi.org/10.1007/s12598-014-0410-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-014-0410-4

Keywords

Navigation