Skip to main content
Log in

Synthesis and characterization of Nd3+-doped Ce0.6Zr0.4O2 and its doping significance on oxygen storage capacity

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Cerium and cerium-based oxides are found to be an important element in three-way catalytic converter (TWC). The effective utilization of TWC is found to be reduced due to thermal loading which results in structural deformation of ceria. Doping Zr4+ into the rare earth element can increase the oxygen storage capacity and thermal stability. Hence, an attempt was made to study the oxygen storage capacity and thermal stability of ceria by doping Zr4+ and Nd3+. Cerium-based nanocrystallite in the composition of Ce0.6Zr0.4−xNd1.3xO2 (0 ≤ x ≤ 0.4) was prepared by sol–gel synthesize technique with citric acid as a gel-forming agent. X-ray diffraction (XRD) result shows that doping Nd3+ into ceria lattice forms homogenous solid solution of cubic fluorite structure up to 25 % of substitute only. Doping higher amount of Nd3+ into ceria lattice leads to the formation of Nd2O3. Raman spectrum study confirms that oxygen storage capacity band is present in Ce0.6Zr0.4O2 and Ce0.6Zr0.3Nd0.13O2. The oxygen storage capacity was calculated through weight loss of the sample during the second heating cycle with cyclic heating from 30 to 800 °C in thermogravimetric analysis (TGA). The TGA study reveals that the oxygen storage capacity of Ce0.6Zr0.4O2 decreases after the substitution of Nd3+, which is due to the larger ionic radius of Nd3+ compared with that of Zr4+ and CeO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Park S, Vohs JM, Gorte RJ. Direct oxidation of hydrocarbons in a solid-oxide fuel cell. Lett Nat. 2000;404(6775):265.

    Article  CAS  Google Scholar 

  2. Jasinski P, Suzuki T, Anderson HU. Nanocrystalline undoped ceria oxygen sensor. Sens Actuators B. 2003;95(1–3):73.

    Article  CAS  Google Scholar 

  3. Yabe S, Yamashita M, Momose S, Tahira K, Yoshida S, Li R, Yin S, Sato T. Synthesis and UV-shielding properties of metal oxide doped ceria via soft solution chemical processes. Int J Inorg Mater. 2001;3(7):1003.

    Article  CAS  Google Scholar 

  4. Si R, Zhang YW, You LP, Yan CH. Self-organized monolayer of nanosized ceria colloids stabilized by poly(vinylpyrrolidone). J Phys Chem B. 2006;110(12):5994.

    Article  CAS  Google Scholar 

  5. Yamamura K, Takiguchi T, Ueda M, Deng H, Hattori AN, Zettsu N. Plasma assisted polishing of single crystal SiC for obtaining atomically flat strain-free surface. CIRP Ann Manuf Technol. 2011;60(1):571.

    Article  Google Scholar 

  6. Zhang F, Chen CH, Raitano JM, Hanson JC, Caliebe WA, Khalid S, Chan SW. Phase stability in ceria-zirconia binary oxide nanoparticles: the effect of the Ce3+ concentration and the redox environment. J Appl Phys. 2006;99(8):084313.

    Article  Google Scholar 

  7. Aneggi E, Boaro M, Leitenburg CD, Dolcetti G, Trovarelli A. Insights into the redox properties of ceria-based oxides and their implications in catalysis. J Alloy Compd. 2006;408:1096.

    Article  Google Scholar 

  8. Fornasiero P, Monte RD, Rao GR, Kaspar J, Meriani S, Trovarelli A, Grazinani M. Rh-loaded CeO2–ZrO2 solid solution as highly efficient oxygen exchangers: dependence of the reduction behavior and the oxygen storage capacity on the structural properties. J Catal. 1995;151(1):168.

    Article  CAS  Google Scholar 

  9. Kawamoto JI, Yagi Y, Saito M, Yamamura H. Oxide-ion conduction and dielectric relaxation in the fluorite-type Zr0.8Ln0.2O1.9 (Ln = Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb, Lu) system. IOP Conf Ser Mater Sci Eng. 2011;18(13):132010.

    Article  Google Scholar 

  10. Suda A, Ukyo Y, Sobukawa H, Sugiura M. Improvement of oxygen storage capacity of CeO2–ZrO2 solid solution by heat treatment in reducing atmosphere. J Ceram Soc Jpn. 2002;110(2):126.

    Article  CAS  Google Scholar 

  11. Zhang Z, Zhang Y, Mu Z, Yu P, Ni X, Wang S, Zheng L. Synthesis and catalytic properties of Ce0.6Zr0.4O2 solid solutions in the oxidation of soluble organic fraction from diesel engines. Appl Catal B. 2007;76(3–4):335.

    Article  CAS  Google Scholar 

  12. Priya NS, Somayaji C, Kanagaraj S. Oxygen storage capacity of CexZr 1−xO 2 (0.4 ≤ x ≤ 0.8) solid solution using thermogravimetric analysis. Adv Mater Res. 2013;747:579.

    Article  CAS  Google Scholar 

  13. Giménez AMH, Xavier LPS, López AB. Improving ceria-zirconia soot combustion catalysts by neodymium doping. Appl Catal A. 2013;100:462.

    Google Scholar 

  14. Jia L, Shen M, Hao J, Rao T, Wang J. Dynamic oxygen storage and release over Mn0.1Ce0.9O x and Mn0.1Ce0.6Zr 0.3Ox complex compounds and structural characterization. J Alloy Compd. 2008;454(1–2):321.

    Article  CAS  Google Scholar 

  15. Rui R, Hongwei Z, Xiaodong WU, Jun F, Duan W. Structure and oxygen storage capacity of Pd/Pr/CeO2–ZrO2 catalyst: effects of impregnated praseodymia. J Rare Earths. 2014;32(2):108.

    Article  Google Scholar 

  16. Mikulova J, Rossignol S, Gerardy F, Mesnard D, Charles K, Duprez D. Properties of cerium–zirconium mixed oxides partially substituted by neodymium: comparison with Zr–Ce–Pr–O ternary oxides. J. Solid State Chem. 2006;179(8):2511.

    Article  CAS  Google Scholar 

  17. Kaspar J, Fornasiero P, Graziani M. Use of CeO2-based oxides in the three-way catalysis. Catal Today. 1999;50(2):285.

    Article  CAS  Google Scholar 

  18. Robert CL, Long JW, Lucas EM, Pettigrew KA, Stroud RM, Doesche MS, Rolison DR. Sol-gel-derived ceria nanoarchitectures: synthesis, characterization, and electrical properties. Chem Mater. 2006;18(1):50.

    Article  Google Scholar 

  19. Das M, Patil S, Bhargava N, Kanga JF, Riedel LM, Seal S, Hickman JJ. Auto-catalytic ceria nanoparticles offer neuroprotection to adult rat spinal cord neurons. Biomaterials. 2007;28(10):1918.

    Article  CAS  Google Scholar 

  20. Tu YB, Luo JY, Meng M, Wang G, He JJ. Ultrasonic-assisted synthesis of highly active catalyst Au/MnOx–CeO 2 used for the preferential oxidation of CO in H2-rich stream. Int J Hydrogen Energy. 2009;34(9):3743.

    Article  CAS  Google Scholar 

  21. Pengpanich S, Meeyoo V, Rirksomboon T, Bunyakiat K. Catalytic oxidation of methane over CeO2–ZrO2 mixed oxide solid solution catalysts prepared via urea hydrolysis. Appl Catal A. 2002;234(1–2):221.

    Article  CAS  Google Scholar 

  22. Rupp JLM, Scherrer B, Harvey AS, Gauckler LJ. Crystallization and grain growth kinetics for precipitation-based ceramics: a case study on amorphous ceria thin films from spray pyrolysis. Adv Funct Mater. 2009;19(17):2790.

    Article  CAS  Google Scholar 

  23. Wang R, Crozier PA, Sharma R, Adams JB. Nanoscale heterogeneity in ceria zirconia with low-temperature redox properties. Journal of Physical Chemistry B. 2006;110(18):278.

    Google Scholar 

  24. Vantomme A, Yuan ZY, Du G, Bl S. Surfactant-assisted large-scale preparation of crystalline CeO2 nanorods. Langmuir. 2005;21(3):1132.

    Article  CAS  Google Scholar 

  25. Tani T, Watanabe N, Takator K. Morphology of oxide particles made by the emulsion combustion method. J Ceramic Soc. 2003;86(6):898.

    Article  CAS  Google Scholar 

  26. Chervin CN, Clapsaddle BJ, Chiu HW, Gash AE, Satcher JH, Kauzlarich SM. Aerogel synthesis of yttria-stabilized zirconia by a non-alkoxide sol-gel route. Chem Mater. 2005;17(13):3345.

    Article  CAS  Google Scholar 

  27. Priya NS, Somayaji C, Kanagaraj S. Optimization of ceria–zirconia solid solution based on OSC measurement by cyclic heating process. Procedia Eng. 2013;64:1235.

    Article  CAS  Google Scholar 

  28. Ozawa M, Matuda K, Suzuki S. Microstructure and oxygen release properties of catalytic alumina-supported CeO2–ZrO2 powders. J Alloys Compd. 2000;303:56.

    Article  Google Scholar 

  29. Wu X, Wu X, Liang Q, Fan J, Weng D, Xie Z, Wei S. Structure and oxygen storage capacity of Pr/Nd doped CeO2–ZrO2 mixed oxides. Solid State Sci. 2007;9(7):636.

    Article  CAS  Google Scholar 

  30. Wang Q, Li Z, Zhao B, Li G, Zhou R. Effect of synthesis method on the properties of ceria–zirconia modified alumina and the catalytic performance of its supported Pd-only three-way catalyst. J Mol Catal A: Chem. 2011;344(1–2):132.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natesan Shanmuga Priya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Priya, N.S., Somayaji, C. & Kanagaraj, S. Synthesis and characterization of Nd3+-doped Ce0.6Zr0.4O2 and its doping significance on oxygen storage capacity. Rare Met. 40, 231–236 (2021). https://doi.org/10.1007/s12598-016-0698-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-016-0698-3

Keywords

Navigation