Skip to main content
Log in

Synthesis and Structural Characterization of Eu2O3 Doped CeO2: Influence of Oxygen Defects on CO Oxidation

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

In this study, nanosized Ce0.9Eu0.1O2−δ (CE 91) and Ce0.8Eu0.2O2−δ (CE 82) solid solutions were prepared by a modified co-precipitation method, followed by calcination at 773 and 1,073 K. Structural properties of the prepared materials were thoroughly investigated by different characterization techniques, namely, X-ray powder diffraction (XRD), Brunauer–Emmett–Teller surface area, high resolution transmission electron microscopy, Raman spectroscopy, UV–Visible diffuse reflectance spectroscopy (UV–Vis DRS), and X-ray photoelectron spectroscopy (XPS). The catalytic activity for CO oxidation was assessed and compared with the well-established CeO2–ZrO2 (CZ) catalyst. As confirmed by powder XRD, the synthesized materials maintain the F-type crystalline structure characteristic of ceria (CeO2). The interaction of CeO2 with Eu3+ dopant promoted the formation of oxygen vacancies as revealed by Raman results. UV–Vis DRS and XPS data suggest that Ce exists in both 3+ and 4+ oxidation states and Eu in the 3+ state. Results of catalytic CO oxidation indicate that Eu doped ceria exhibits a better performance than Zr doped ceria irrespective of the calcination temperature. This may be due to the increased number of oxygen defects and the easily reducible nature of the material, which results from the substitution of Ce4+ species with Eu3+ ions.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wang J, Shen M, An Y, Wang J (2008) Catal Commun 10:103

    Article  Google Scholar 

  2. Prasad R, Singh P (2012) Cat Rev Sci Eng 54:224

    Article  CAS  Google Scholar 

  3. Yeste MP, Hernández-Garrido JC, Arias DC, Blanco G, Rodríguez-Izquierdo JM, Pintado JM, Bernal S, Pérez-Omil JA, Calvino JJ (2013) J Mater Chem A 1:4836

    Article  CAS  Google Scholar 

  4. Ciston J, Si R, Rodriguez JA, Hanson JC, Martínez-Arias A, Fernandez-García M, Zhu Y (2011) J Phys Chem C 115:13851

    Article  CAS  Google Scholar 

  5. Petkovich ND, Rudisill SG, Venstrom LJ, Boman DB, Davidson JH, Stein A (2011) J Phys Chem C 115:21022

    Article  CAS  Google Scholar 

  6. Paier J, Penschke C, Sauer J (2013) Chem Rev 113:3949

    Article  CAS  Google Scholar 

  7. Reddy BM, Bharali P, Thrimurthulu G, Saikia P, Katta L, Park S-E (2008) Catal Lett 123:327

    Article  CAS  Google Scholar 

  8. Yan K, Min S, Aimin L (2012) Catal Lett 142:1498

    Article  Google Scholar 

  9. Bharali P, Saikia P, Reddy BM (2012) Catal Sci Technol 2:931

    Article  CAS  Google Scholar 

  10. Lawrence NJ, Brewer JR, Wang L, Wu T, Wells-Kingsbury J, Ihrig MM, Wang G, Soo Y-L, Mei W-N, Cheung CL (2011) Nano Lett 11:2666

    Article  CAS  Google Scholar 

  11. Reddy LH, Reddy GK, Devaiah D, Reddy BM (2012) Appl Catal A Gen 445–446:297

    Article  Google Scholar 

  12. Zongxian Y, Zhaoming F, Yanning Z, Ruqian W (2011) Catal Lett 141:78

    Article  Google Scholar 

  13. Beckers J, Rothenberg G (2010) Green Chem 12:939

    Article  CAS  Google Scholar 

  14. Wang Z, Quan Z, Lin J (2007) Inorg Chem 46:5237

    Article  Google Scholar 

  15. McBride JR, Hass KC, Poindexter BD, Weber WH (1994) J Appl Phys 76:2435

    Article  CAS  Google Scholar 

  16. Wang JB, Wn-Huw S, Ta-Jen H (2000) Appl Catal A Gen 203:191

    Article  CAS  Google Scholar 

  17. Tiseanu C, Parvulescu VI, Boutonnet M, Cojocaru B, Primus PA, Teodorescu CM, Solans C, Dominguezg MS (2011) Phys Chem Chem Phys 13:17135

    Article  CAS  Google Scholar 

  18. Reddy BM, Katta L, Thrimurthulu G (2010) Chem Mater 22:467

    Article  CAS  Google Scholar 

  19. Reddy BM, Thrimurthulu G, Katta L, Yamada Y, Park S-E (2009) J Phys Chem C 113:15882

    Article  CAS  Google Scholar 

  20. Kuntaiah K, Sudarsanam P, Reddy BM, Vinu A (2013) RSC Adv 3:7953

    Article  CAS  Google Scholar 

  21. Hernández WY, Centeno MA, Romero-Sarria F, Odriozola JA (2009) J Phys Chem C 113:5629

    Article  Google Scholar 

  22. Wang Z-L, Li G-R, Ou Y-N, Feng Z-P, Qu D-L, Tong Y-X (2011) J Phys Chem C 115:351

    Article  CAS  Google Scholar 

  23. Li L, Li X (2013) J Phys Chem C 117:15383

    Article  CAS  Google Scholar 

  24. Zhang X, Wei J, Yang H, Liu X, Liu W, Zhang C, Yang Y (2013) Eur J Inorg Chem 2013:4443

    Article  CAS  Google Scholar 

  25. Strandwitz NC, Shaner S, Stucky GD (2011) J Mater Chem 21:10672

    Article  CAS  Google Scholar 

  26. Bueno-Ferrer C, Parres-Esclapez S, Lozano-Castelló D, Bueno-López A (2010) J Rare Earths 28:647

    Article  CAS  Google Scholar 

  27. Kumar A, Babu S, Karakoti AS, Schulte A, Seal S (2009) Langmuir 25:10998

    Article  CAS  Google Scholar 

  28. Wang Z, Wang Q, Liao Y, Shen G, Gong X, Han N, Liu H, Chen Y (2011) Chem Phys Chem 12:1

    Google Scholar 

  29. Babu S, Schulte A, Seal S (2008) Appl Phys Lett 92:123112

    Article  Google Scholar 

  30. Prasad DH, Park SY, Ji H-I, Kim H-R, Son J-W, Kim B-K, Lee H-W, Lee J-H (2012) J Phys Chem C 116:3467

    Article  CAS  Google Scholar 

  31. Lee Y, He G, Akey AJ, Si R, Flytzani-Stephanopoulos M, Herman IP (2011) J Am Chem Soc 133:12952

    Article  CAS  Google Scholar 

  32. Fazio B, Spadaro L, Trunfio G, Negroc J, Arena F (2011) J Raman Spectrosc 42:1583

    Article  CAS  Google Scholar 

  33. Trovarelli A (1999) Comments Inorg Chem 20:263

    Article  CAS  Google Scholar 

  34. Minervini L, Zacate MO, Grimes RW (1999) Solid State Ionics 116:339

    Article  CAS  Google Scholar 

  35. Liu L, Yao Z, Deng Y, Gao F, Liu B, Dong L (2011) ChemCatChem 3:978

    Article  CAS  Google Scholar 

  36. Laguna OH, Centeno MA, Boutonnet M, Odriozola JA (2011) Appl Catal B Environ 106:621

    Article  CAS  Google Scholar 

  37. Rao GR, Mishra BG (2005) Mater Chem Phys 89:110

    Article  CAS  Google Scholar 

  38. Ferreira J, Tavares P, Figueiredo JL, Faria JL (2012) Ind Eng Chem Res 51:10535

    Article  CAS  Google Scholar 

  39. Li X, Dai H, Deng J, Liu Y, Xie S, Zhao Z, Wang Y, Guo G, Arandiyan H (2013) Chem Eng J 228:965

    Article  CAS  Google Scholar 

  40. Palmqvist AEC, Wirde M, Gelius U, Muhammed M (1999) Nanostruct Mater 11:995

    Article  CAS  Google Scholar 

  41. Wang N, Shen K, Huang L, Yu X, Qian W, Chu W (2013) ACS Catal 3:1638

    Article  CAS  Google Scholar 

  42. Razzaq R, Zhu H, Jiang L, Muhammad U, Li C, Zhang S (2013) Ind Eng Chem Res 52:2247

    Article  CAS  Google Scholar 

  43. Damyanova S, Pawelec B, Arishtirova K, MartinezHuerta MV, Fierro JLG (2008) Appl Catal A Gen 337:86

    Article  CAS  Google Scholar 

  44. Ji P, Zhang J, Chen F, Anpo M (2008) J Phys Chem C 112:17809

    Article  CAS  Google Scholar 

  45. Yan M, Mori T, Zou J, Ye F, Ou DR, Drennan J (2009) Acta Mater 57:722

    Article  CAS  Google Scholar 

  46. Sun S, Zhao X, Lu H, Zhang Z, Wei J, Yang Y (2013) CrystEngComm 15:1370

    Article  CAS  Google Scholar 

  47. Liu W, Feng L, Zhang C, Yang H, Guo J, Liu X, Zhang X, Yang Y (2013) J Mater Chem A 1:6942

    Article  CAS  Google Scholar 

  48. Reddy BM, Bharali P, Saikia P, Park S-E, van den Berg MWE, Muhler M, Grünert W (2008) J Phys Chem C 112:11729

    Article  CAS  Google Scholar 

  49. Liu XW, Zhou KB, Wang L, Wang BY, Li YD (2009) J Am Chem Soc 131:3140

    Article  CAS  Google Scholar 

  50. Liu Y, Wen C, Guo Y, Lu G (2010) J Phys Chem C 114:9889

    Article  CAS  Google Scholar 

  51. Yu Q, Wu X, Tang C, Qi L, Liu B, Gao F, Sun K, Dong L, Chen Y (2011) J Colloid Interface Sci 354:341

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We greatly acknowledge Prof. Dr. W. Grünert, Ruhr University Bochum, Germany for providing CO oxidation results. T.V. and D.N.D. thank Council of Scientific and Industrial Research (CSIR), New Delhi for the Research Fellowships. Financial support was received from Department of Science and Technology, New Delhi (SB/S1/PC-106/2012) and the Indo-Swiss Joint Research Program ISJRP (Grant# 138852).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjaram M. Reddy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vinodkumar, T., Naga Durgasri, D., Reddy, B.M. et al. Synthesis and Structural Characterization of Eu2O3 Doped CeO2: Influence of Oxygen Defects on CO Oxidation. Catal Lett 144, 2033–2042 (2014). https://doi.org/10.1007/s10562-014-1367-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-014-1367-5

Keywords

Navigation