Skip to main content
Log in

Properties of copper/graphite/carbon nanotubes composite reinforced by carbon nanotubes

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Electroless Cu plating was used for flake G powder and CNTs, Cu–G–CNTs (copper/graphite/carbon nanotubes) composites were manufactured by means of powder metallurgical method. The influences of CNTs on the mechanical properties, conductivity properties, friction, and wear performance of the composite were examined. The results indicate that adding a small amount of CNTs can improve comprehensive property of the composites, especially mechanical property. However, excessive CNT, which is easily winding reunion and grain boundary segregation, results in performances degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Han YY, Guo H, Yin FZ, Zhang XM, Chu K, Fan YM. Microstructure and thermal conductivity of copper matrix composites reinforced with mixtures of diamond and SiC particles. Rare Met. 2012;31(1):58.

    Article  Google Scholar 

  2. Esawi AMK, Morsi K, Gawad A, Borah P. Fabrication and properties of dispersed carbon nanotube-aluminum composites. Mater Sci Eng, A. 2009;508(3):167.

    Google Scholar 

  3. Chen PW, Chung DL. Carbon fiber reinforced concrete as an electrical contact material for smart structures. Smart Mater Struct. 1993;38(2):181.

    Article  Google Scholar 

  4. Ding HD, Li YW, Hao HQ. The relationship between the bending strength and the gap of copper-graphite material. T Nonferr Metal Soc. 1996;4(6):123.

    Google Scholar 

  5. Rajkumar K, Aravindan S, Kulkarni MS. Wear and life characteristics of microwave-sintered copper-graphite composite. J Mater Eng Perform. 2012;21(11):2389.

    Article  CAS  Google Scholar 

  6. Kohno M, Orii T, Hirasawa M. Growth of single-walled carbon nanotubes from size-selected catalytic metal particles. Appl Phys Lett. 2004;79(5):787.

    CAS  Google Scholar 

  7. Shaikh S, Lafdi K, Silverman E. The effect of a CNT interface on the thermal resistance of contacting surfaces. Carbon. 2007;45(4):695.

    Article  CAS  Google Scholar 

  8. Wang F, Arai S, Endo M. Metallization of multi-walled carbon nanotubes with copper by an electroless deposition process. Electrochem Commun. 2004;6(10):1042.

    Article  CAS  Google Scholar 

  9. Dovoush WM. Processing and characterization of CNT/Cu nanocomposites by powder technology. Powder Metall Met C+. 2008;47(9):531.

    Google Scholar 

  10. Nie JH, Jia CC, Jia X, Zhang YF, Shi N, Li Y. Fabrication, microstructures, and properties of copper matrix composites reinforced by molybdenum-coated carbon nanotubes. Rare Met. 2011;30(4):401.

    Article  CAS  Google Scholar 

  11. Deng M, Ding GF, Wang Y. MEMS-based carbon nanotube and carbon nanofiber Cu micro special electric contact. J Micromech Microeng. 2009;19(6):21.

    Article  Google Scholar 

  12. Yang C, Hazeghi A, Takei K. Low-resistance electrical contact to carbon nanotubes with graphitic interfacial layer. IEEE T Electron Dev. 2012;59(1):12.

    Article  Google Scholar 

  13. Nie JS, Jia X, Jia CC, Li Y, Zhang YF, Shi N. Friction and wear properties of copper matrix composites reinforced by tungsten-coated carbon nanotubes. Rare Met. 2011;30(6):657.

    Article  CAS  Google Scholar 

  14. Feng Y, Zhang M, Xu Y. Effect of the electric current on the friction and wear properties of the CNT-Ag-G composites. Carbon. 2005;43(13):2685.

    Article  Google Scholar 

  15. Wang J, Feng Y, Li S, Lin S. Influence of graphite content on sliding wear characteristics of MWCNTs–Ag–G electrical contact materials. T Nonferr Metal Soc. 2009;19(1):113.

    Article  CAS  Google Scholar 

  16. Hu ZL, Chen ZH, Xia JT. Study on surface film in the electrographite brushes against copper commutators for variable current and humidity. Wear. 2008;264(2):11.

    Article  CAS  Google Scholar 

  17. Zhang GY, Zhang H, Wei D. Carbon nanotubes enhance aluminum composite material electronic theory research. Acta Phys Sinica Chin Ed. 2007;56(3):1581.

    CAS  Google Scholar 

  18. Emge A, Karthikeyan S, Kim HJ, Rigney DA. The effect of sliding velocity on the tribological behavior of copper. Wear. 2007;266(3):614.

    Article  Google Scholar 

  19. Zhao NQ, Li JJ, Yang XJ. Influence of the P/M process on the microstructure and properties of WC reinforced copper matrix composite. J Mater Sci. 2004;39(15):4829.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was financially supported by the National Nature Science Foundation of China (No. 51003060), the Distinguished Young Talents in Higher Education of Guangdong China (No. 2012LYM_0118), and the Shenzhen Innovation and Technology Commission under the Strategic Emerging Industries Development Project (No. ZDSY20120612094418467).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiong-Zhi Xiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, XY., Xiang, XZ., Niu, F. et al. Properties of copper/graphite/carbon nanotubes composite reinforced by carbon nanotubes. Rare Met. 32, 278–283 (2013). https://doi.org/10.1007/s12598-013-0079-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-013-0079-0

Keywords

Navigation