Skip to main content
Log in

Microstructure and thermal conductivity of copper matrix composites reinforced with mixtures of diamond and SiC particles

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The thermal conductivity of diamond hybrid SiC/Cu, diamond/Cu and SiC/Cu composite were calculated by using the extended differential effective medium (DEM) theoretical model in this paper. The effects of the particle volume fraction, the particle size and the volume ratio of the diamond particles to the total particles on the thermal conductivity of the composite were studied. The DEM theoretical calculation results show that, for the diamond hybrid SiC/Cu composite, when the particle volume fraction is above 46% and the volume ratio of the diamond particles to the SiC particles is above 13:12, the thermal conductivity of the composite can reach 500 W·m−1·K−1. The thermal conductivity of the composite has little change when the particle size is above 200 μm. The experimental results show that Ti can improve the wettability of the SiC and Cu. The thermal conductivity of the diamond hybrid SiCTi/Cu is almost two times better than that of the diamond hybrid SiC/Cu. It is feasible to predict the thermal conductivity of the composite by DEM theoretical model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schelling P.K., Shi L., and Goodson K.E., Managing heat for electronics, Materials Today, 2005, 6: 30.

    Article  Google Scholar 

  2. Schubert Th., Trindade B. and Weißgärber T., Interfacial design of Cu-based composites prepared by powder metallurgy for heat sink applications, Mater. Sci. Eng. A, 2008, 475: 39.

    Article  Google Scholar 

  3. He X.B., Qu X.H., and Ren S.B., Net-shape forming of composite packages with high thermal conductivity, Science in China Series E: Technological Sciences, 2009, 52(1): 238.

    Article  CAS  Google Scholar 

  4. Zweben C., Thermal management and electronic packaging applications, ASM., 2001, 21: 1078.

    Google Scholar 

  5. Chung D.D.L., Materials for thermal conduction, Applied Thermal Engineering, 2001, 21: 1593.

    Article  CAS  Google Scholar 

  6. Zweben C., Advances in LED packaging and thermal management materials, SPIE., 2008, 691018: 1.

    Google Scholar 

  7. Zhang X.M,, Guo H., and Yin F.Z., Interfacial microstructure and properties of diamond/Cu-xCr composites for electronic packaging applications, Rare Metals, 2011, 30(1): 94.

    Article  CAS  Google Scholar 

  8. Shang Q.L., Tao J.M., and Xu M.C., Research progress of diamond-cu composite material for electronic packaging, Electronics Process Technology, 2009, 30(1): 5.

    Google Scholar 

  9. Kidalov S.V., and Shakhov F.M., Thermal conductivity of diamond composite, Materials, 2009, (2): 2467.

  10. Prieto R., Molina J.M., Narciso J., and Louis E., Fabrication and properties of graphite flakes/metal composites for thermal management applications, Scripta Materialia, 2008, 59: 11.

    Article  CAS  Google Scholar 

  11. Molina J.M., Narciso J., Weber L., Mortensen A., and Louis E., Thermal conductivity of Al-SiC composites with monomodal and bimodal particle size distribution, Materials Science and Engineering A, 2008, 480: 483.

    Article  Google Scholar 

  12. Chu K., Jia C.C., and Liang X. B. Experimental and modeling study of the thermal conductivity of SiCp/Al composites with bimodal size distribution, J. Mater. Sci., 2009, 44: 4370.

    Article  CAS  Google Scholar 

  13. Molina J.M., Rhême M., and Carron J., Thermal conductivity of aluminum matrix composites reinforced with mixtures of diamond and SiC particles, Scripta Materialia, 2008, 58: 393.

    Article  CAS  Google Scholar 

  14. Davidson H.L., Copper-diamond composites substrates for electronic components, IEEE., 1995: 538.

  15. Zhu D.Z., Wu G.H., and Chen G.Q., Fabrication and properties of SiC/Cu composites for electronic packaging, [in] IEEE, 6 th International Conference on Electronic Packaging Technology, Shenzhen, 2005: 191.

  16. Norris A.N. Callegari A.T., and Sheng P., A generalized differential effective medium theory, J. Mech. Phys. Solids, 1985, 53: 525.

    Article  Google Scholar 

  17. Ervin V.J., Klett J.W., and Mundt C.M., Estimation of the thermal conductivity of composites, J. Mater. Sci., 1999, 34: 3545.

    Article  CAS  Google Scholar 

  18. Bruggeman D.A.G., Effective medium model for the optical properties of composite materials, Ann. Phys. Leipzig, 1935, 24: 636.

    Article  CAS  Google Scholar 

  19. Young T.H., Chuang W.Y., and Hsieh M.Y., Assessment and modeling of poly (vinyl alcohol) bioartificial pancreas in vivo, Biomaterials, 2002, 23(16): 3495.

    Article  CAS  Google Scholar 

  20. Xiu Z.Y., Thermal Properties and Mechanical Properties of SiP/LD11 Composite Materials for Electronic Packaging [Dissertation], Harbin Institute of Technology, Harbin, 2003: 15.

    Google Scholar 

  21. Molina J.M., Prieto R., and Narciso J., The effect of porosity on the thermal conductivity of Al-12 wt.% Si/SiC composites, Scripta Materialia, 2009, 60: 582.

    Article  CAS  Google Scholar 

  22. Swartz E.T., and Pohl R.O., Thermal boundary resistance, Rev. Mod. Phys., 1989, 61: 605.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanyuan Han.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, Y., Guo, H., Yin, F. et al. Microstructure and thermal conductivity of copper matrix composites reinforced with mixtures of diamond and SiC particles. Rare Metals 31, 58–63 (2012). https://doi.org/10.1007/s12598-012-0463-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-012-0463-1

Keywords

Navigation