Skip to main content
Log in

Nanocrystalline ZrO2 preparation and kinetics research of phase transition

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The precursor of nanocrystalline ZrO2 was synthesized by solid-state reaction at low heat using ZrOCl2·8H2O, and Na2CO3·10H2O as raw materials. The nanocrystalline ZrO2 was obtained by calcining the precursor. The precursor and its calcined products were characterized using TG/DTA, FT-IR, XRD, and SEM. The results showed that the precursor dried at 353 K was a zirconyl carbonate compound. When the precursor was calcined at 673 K for 150 min, highly crystallization ZrO2 with tetragonal structure (space group P42/nmc (137)) was obtained with a crystallite size of 24 nm. However, when the precursor was calcined at 1023 K for 150 min, highly crystallization ZrO2 with monoclinic structure (space group P21/c(14)) was obtained with a crystallite size of 20 nm. The mechanism and kinetics of the thermal process of the precursor were studied using DTA and XRD techniques. Based on the Kissinger and Arrhenius equation, the values of the activation energies associated with the thermal process of the precursor were determined to be 26.80 and 566.73 kJ·mol−1 for the first and third steps, respectively. The mechanism of ZrO2 phase transition from tetragonal to monoclinic structure is the random nucleation and growth of nuclei reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tanabe K., Surface and catalytic properties of ZrO2, Mater. Chem. Phys., 1985, 13: 347.

    Article  CAS  Google Scholar 

  2. Yamaguchi T., Application of ZrO2 as a catalyst and a catalyst support, Catal. Today, 1994, 20:199.

    Article  CAS  Google Scholar 

  3. Guo G.Y., and Chen Y.L., A nearly pure monoclinic nanocrystalline zirconia, J. Solid State Chem., 2005, 178: 1675.

    Article  CAS  Google Scholar 

  4. Manicone P.F., Iommetti P.R., and Raffaelli L., An overview of zirconia ceramics: basic properties and clinical applications, J. Dentistry, 2007, 35: 819.

    Article  CAS  Google Scholar 

  5. Corma A., Inorganic solid acids and their use in acid-catalyzed hydrocarbon reactions, Chem. Rev., 1995, 95: 559.

    Article  CAS  Google Scholar 

  6. Chan K.K., and Browstein A.M., Ceramic membranes growth prospects and opportunities, Ceram. Bull., 1991, 70: 703.

    CAS  Google Scholar 

  7. Chan K.S., Chauh G.K., and Jaenicke S., Preparation of stable, high surface area zirconia, J. Mater. Sci. Lett., 1994, 13: 1579.

    Article  CAS  Google Scholar 

  8. Shojai F., and Antyla T.M., Monoclinic zirconia microfiltration membranes: preparation and characterization, J. Porous Mater., 2001, 8: 129.

    Article  CAS  Google Scholar 

  9. Chen D.Y., Jordan E., and Gell M., Thermal and crystallizetion behavior of zirconia precursor used in the solution precursor plasma spray process, J. Mater. Sci., 2007, 42: 5576.

    Article  CAS  Google Scholar 

  10. Garcia E., Miranzo P., Soltani R., and Coyle T.W., Microstructure and thermal behavior of thermal barrier coatings, J. Therm. Spray Technol., 2008, 17: 478.

    Article  CAS  Google Scholar 

  11. Fergus J.W., Electrolytes for solid oxide fuel cells, J. Power Sources, 2006, 162: 30.

    Article  CAS  Google Scholar 

  12. Wilk G.D., and Wallace R.M., Stable zirconium silicate gate dielectrics deposited directly on silicon, Appl. Phys. Lett., 2000, 76: 112.

    Article  CAS  Google Scholar 

  13. Dela E., Diaz-Torres Rosa-Cruz L.A., Salas P., Castano V.M., and Hernandez J.M., Evidence of non-radiative energy transfer from the host to the active ions in monoclinic ZrO2:Sm3+, Phys D: Appl. Phys., 2001, 34: 83.

    Article  Google Scholar 

  14. Heshmatpour F., and Aghakhanpour R.B., Synthesis and characterization of nanocrystalline zirconia powder by simple sol-gel method with glucose and fructose as organic additives, Powder Technol., 2011, 205: 193.

    Article  CAS  Google Scholar 

  15. Oliveira A.P., and Torem M.L., The influence of precipitation variables on zirconia powder synthesis, Powder Techn., 2001, 119: 181.

    Article  CAS  Google Scholar 

  16. Ray J.C., Saha C.R., and Pramanik P., Stabilized nanoparticles of metastable ZrO2 with Cr3+/Cr4+ cations: preparation from a polymer precursor and the study of the thermal and structural properties, J. Eur. Ceram. Soc., 2002, 22: 851.

    Article  CAS  Google Scholar 

  17. Peshev P., Stambolova I., Vassilev S., Stefanov P., Blaskov V., Starbova N., and Starbova K., Spray pyrolysis deposition of nanostructured zirconia thin films, Mater. Sci. Eng., B, 2003, 97: 106.

    Article  Google Scholar 

  18. Sekulic A., Furic K., and Stubicar M., Raman study of phase transitions in pure and alloyed zirconia induced by ball-milling and a laser beam, J. Mol. Struct., 1997, 410-411: 275.

    CAS  Google Scholar 

  19. Chang Q.B., Zhou J.E., Wang Y.Q., and Meng G.Y., Preparation and characterization of unique zirconia crystals within pores via a sol-gel-hydrothermal method, Adv. Powder Technol., 2009, 20: 371.

    Article  CAS  Google Scholar 

  20. Piticescu R., Monty C., and Millers D., Hydrothermal synthesis of nanostructured zirconia materials: present state and future prospects, Sens. Actuators, B, 2005, 109: 102.

    Article  Google Scholar 

  21. Su C., Li J., He D., Cheng Z., and Zhu Q., Synthesis of isobutene from synthesis gas over nanosize zirconia catalysts, Appl. Catal., A, 2000, 202: 81.

    Article  CAS  Google Scholar 

  22. Drożdż-Cieśla E., Małecki A., and Jajko B., Mechanism of thermal decomposition of zirconyl oxalate ZrOC2O4, J. Therm. Anal. Calorim., 2008, 92: 939.

    Article  Google Scholar 

  23. Purohit R.D., Saha S., and Tyagi A.K., Combustion synthesis of nanocrystalline ZrO2 powder: XRD, Raman spectroscopy and TEM studies, Mater. Sci. Eng., B, 2006, 130: 57.

    Article  CAS  Google Scholar 

  24. Nitsche R., Rodewald M., Skandan G., Fuess H., and Hahn H., HRTEM study of nanocrystalline zirconia powders, Nanostruct. Mater., 1996, 7: 535.

    Article  CAS  Google Scholar 

  25. Salavati-Niasari M., Dadkhah M., and Davar F., Synthesis and characterization of pure cubic zirconium oxide nanocrystals by decomposition of bis-aqua, tris-acetylacetonato zirconium( IV) nitrate as new precursor complex, Inorg. Chim. Acta, 2009, 362: 3969.

    Article  CAS  Google Scholar 

  26. Rezaei M., Alavi S.M., Sahebdelfar S., and Yan Z.F., Tetragonal nanocrystalline zirconia powder with high surface area and mesoporous structure, Powder Technol., 2006, 168: 59.

    Article  CAS  Google Scholar 

  27. Wu W.W., Li S.S, Liao S., Xiang F., and Wu X.H., Preparation of new sunscreen materials Ce1−xZnxO2−x via solid-state reaction at room temperature and study on their properties, Rare Met., 2010, 29: 149.

    Article  CAS  Google Scholar 

  28. Wu X.H., Wu W.W., Liu C., Li S.S., Liao S., and Cai J.C., Synthesis of layered sodium manganese phosphate via low-heating solid-state reaction and its properties, Chin. J. Chem., 2010, 28: 2394.

    Article  CAS  Google Scholar 

  29. Kissinger H.E., Reaction kinetics in differential thermal analysis, Anal. Chem., 1957, 29: 1702.

    Article  CAS  Google Scholar 

  30. Wu X.H., Wu W.W., Li S.S., Cui X.M., and Liao S., Kinetics and thermodynamics of thermal decomposition of NH4NiPO4·6H2O, J. Therm. Anal. Calorim., 2011, 103: 805.

    Article  CAS  Google Scholar 

  31. Avrami M., Kinetics of phase change. I general theory, J. Chem. Phys., 1939, 7: 1103.

    Article  CAS  Google Scholar 

  32. Avrami M., Kinetics of phase change. II transformation-time relations for random distribution of nuclei, J. Chem. Phys., 1940, 8: 212.

    Article  CAS  Google Scholar 

  33. Avrami M., Granulation, phase change, and microstructure kinetics of phase change. III, J. Chem. Phys., 1941, 9: 177.

    Article  CAS  Google Scholar 

  34. Musić S., Popović S., Maljković M., and Dragčević D., Influence of synthesis procedure on the formation and properties of zinc oxide, J. Alloys Compd., 2002, 347: 324.

    Article  Google Scholar 

  35. Li Z.J., Shen X.Q., Feng X., Wang P.Y., and Wu Z.S., Non-isothermal kinetics studies on the thermal decomposition of zinc hydroxide carbonate, Thermochim. Acta, 2005, 438: 102.

    Article  CAS  Google Scholar 

  36. Takei T., Kameshima Y., Yasumori A., and Okada K., Crystallization kinetics of mullite from Al2O3-SiO2 glasses under non-isothermal conditions, J. Eur. Ceram. Soc., 2001, 21: 2487.

    Article  CAS  Google Scholar 

  37. Johnson B.R., Kriven W.M., and Schneider J., Crystal structure development during devitrification of quenched mullite, J. Eur. Ceram. Soc., 2001, 21: 2541.

    Article  CAS  Google Scholar 

  38. Boonchom B. and Danvirutai C., Kinetics and thermodynamics of thermal decomposition of synthetic AlPO4·2H2O, J. Therm. Anal. Calorim., 2009, 98: 771.

    Article  CAS  Google Scholar 

  39. Liu C., Wu X.H., Wu W.W., Cai J.C., and Liao S., Preparation of nanocrystalline LiMnPO4 via a simple and novel method and its isothermal kinetics of crystallization, J. Mater. Sci., 2011, 46: 2474.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenwei Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, W., Cai, J., Wu, X. et al. Nanocrystalline ZrO2 preparation and kinetics research of phase transition. Rare Metals 31, 51–57 (2012). https://doi.org/10.1007/s12598-012-0462-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-012-0462-2

Keywords

Navigation