Skip to main content
Log in

Physicochemical Properties of Hydrothermal Nanocrystalline ZrO2–Y2O3–CeO2 Powders

  • THEORY, MANUFACTURING TECHNOLOGY, AND PROPERTIES OF POWDERS AND FIBERS
  • Published:
Powder Metallurgy and Metal Ceramics Aims and scope

Nanocrystalline powders in the ZrO2−Y2O3−CeO2 system were produced by hydrothermal synthesis in an alkaline environment. The powder properties were studied by differential thermal analysis, Xray diffraction, electron microscopy, petrography, and BET. A low-temperature ZrO2-based cubic solid solution crystallized in the powders in hydrothermal conditions. The specific surface area of the powders was 81−110 m2/g. The lattice parameters of the ZrO2-based solid solution increased monotonically with higher CeO2 amount. The research results are needed for the microstructural design of composites in the ZrO2−Y2O3−CeO2 system with high resistance to low-temperature ageing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  1. E.V. Dudnik, A.V. Shevchenko, A.K. Ruban, V.P. Red’ko, and L.M. Lopato, “Microstructural design of ZrO2–Y2O3–CeO2–Al2O3 materials,” Powder Metall. Met. Ceram., 49, Nos. 9–10, 528–536 (2011).

    Article  Google Scholar 

  2. E.V. Dudnik, S.N. Lakiza, Ya.S. Tishchenko, A.K. Ruban, V.P. Red’ko, A.V. Shevchenko, and L.M. Lopato, “Phase diagrams of refractory oxide systems and microstructural design of materials,” Powder Metall. Met. Ceram., 53, Nos. 5–6, 303–311 (2014).

    Article  Google Scholar 

  3. S. Sōmiya and T. Akiba, “Hydrothermal zirconia powders: A Bibliography,” J. Eur. Ceram. Soc., 19, No. 1, 81–87 (1999).

    Article  Google Scholar 

  4. A.V. Shevchenko, “Hydrothermal techniques in materials science,” in: Inorganic Materials Science. Fundamentals of Materials Science [in Russian], Kyiv (2008), Vol. 2, pp. 272–281.

  5. O. Vasylkiv and Y. Sakka, “Hydroxide synthesis, colloidal processing and sintering of nano-size 3Y-TZP powder,” Scripta Mater., 44, 2219–2223 (2001).

    Article  Google Scholar 

  6. O. Vasylkiv, Y. Sakka, and V. Skorokhod, “Low-temperature processing and mechanical properties of zirconia and zirconia-alumina nano-ceramic,” J. Am. Ceram. Soc., 86, No. 2, 299–304 (2003).

    Article  Google Scholar 

  7. O. Vasylkiv and Y. Sakka, “Synthesis and colloidal processing of zirconia nano-powder,” J. Am. Ceram. Soc., 84, No. 11, 2489–2494 (2001).

    Article  Google Scholar 

  8. E.V. Dudnik, “Modern methods for hydrothermal synthesis of ZrO2-based nanocrystalline powders,” Powder Metall. Met. Ceram., 48, Nos. 3–4, 238–248 (2009).

    Article  Google Scholar 

  9. Z. Yanjie, Z. Yingying, C. Yanning, C. Chongqi, L. Xingyi, and Z. Qi, “Low-temperature water–gas shift reaction over Au/ZrO2 catalysts using hydrothermally synthesized zirconia as supports,” Chin. J. Catal., 33, 230–236 (2012).

    Article  Google Scholar 

  10. Yu.M. Fedenko, T.A. Dontsova, and I.M. Astrelin, “Turbidimetric method for estimating the sizes of nanoparticles in ZrO2 white sols,” Nauk. Vist. NTUU KPI, Issue 1, 155–158 (2012).

  11. M. Taguchi, T. Nakane, A. Matsushita, Y. Sakka, T. Uchikoshi, T. Funazukuri, and T. Naka, “One-pot synthesis of monoclinic ZrO2 nanocrystals under subcritical hydrothermal conditions,” J. Supercrit. Fluids, 85, 57–61 (2014).

    Article  Google Scholar 

  12. E.V. Dudnik and A.V. Shevchenko, “Variation in properties of ZrO2–Y2O3–CeO2–Al2O3 powders during thermal treatment at 400 to 1300°C,” Powder Metall. Met. Ceram., 49, Nos. 3–4, 125–134 (2010).

    Article  Google Scholar 

  13. A. Behbahani, S. Rowshanzamir, and A. Esmaeilifar, “Hydrothermal synthesis of zirconia nanoparticles from commercial zirconia,” Procedia Eng., 42, 908–917 (2012).

    Article  Google Scholar 

  14. L.M. Rudkovskaya, R.N. Pshenichny, T.V. Pavlenko, and A.A. Omelchuk, “Nanostructured zirconium dioxide synthesized hydrothermally from zirconium concentrate decomposition products,” Nanosyst. Nanomater. Nanotekhnol., 10, No. 2, 351–360 (2012).

    Google Scholar 

  15. R. Espinoza-Gonzáleza, E. Mosquera, I. Moglia, R. Villarroel, and V.M. Fuenzalida, “Hydrothermal growth and characterization of zirconia nanostructures on non-stoichiometric zirconium oxide,” Ceram. Int. (2014), URL: [https://doi.org/10.1016/j.ceramint.2014.07.034].

  16. Ch.V. Reddy, I.N. Reddy, J. Shim, D. Kim, and K. Yoo, “Synthesis and structural, optical, photocatalytic, and electrochemical properties of undoped and yttrium-doped tetragonal ZrO2 nanoparticles,” Ceram. Int. (2018), URL: [https://doi.org/10.1016/j.ceramint.2018.04.020].

  17. G. Growth, L. Fei, L. Yanhuai, S. Zhongxiao, X. Kewei, M. Dayan, G. Bo, and C. Hon, “Characteristics of hydrothermally prepared yttria stabilized zirconia nanocrystals during calcination,” Rare Met. Mater. Eng., 46, No. 4, 899–905 (2017).

    Article  Google Scholar 

  18. C. Duran, K. Sato, Y. Hotta, H. Göçmez, and K. Watari, “Ball milling assisted hydrothermal synthesis of ZrO2 nanopowders,” Ceram. Int., 41, 5588–5593 (2015).

    Article  Google Scholar 

  19. A.O. Hongmin, L.U. Xiangsheng, Z. He, Z. Jing, H. Xiaowei, F. Zongyu, and X. Hong, “Preparation of scandia stabilized zirconia powder using microwave-hydrothermal method,” J. Rare Earths, 33, No. 7, 746–751 (2015).

    Article  Google Scholar 

  20. J. Liao, Q. Wang, L. Nie, W. You, and J. Chen, “Single red upconversion and near-infrared downconversion luminescence properties of cubic ZrO2:Y3+–Yb3+–Er3+ nanophosphors via microwave hydrothermal synthesis,” Opt. Mater., 62, 479–484 (2016).

    Article  Google Scholar 

  21. M. Asiltürk, E. Burunkaya, F. Sayilkan, N. Kiraz, and E. Arpaç, “Structural and optical properties of thin films prepared from surface modified ZrO2,” J. Non-Cryst. Solids, 357, 206–210 (2011).

    Article  Google Scholar 

  22. X. Gan, Z. Yu, K. Yuan, C. Xu, X. Wang, L. Zhu, G. Zhang, and D. Xu, “Preparation of a CeO2-nanoparticle thermal radiation shield coating on ZrO2 fibers via a hydrothermal method,” Ceram. Int. (2017), URL: [https://doi.org/10.1016/j.ceramint.2017.07.161. 2017].

  23. L.J. Zhao, W. Zai, M.H. Wong, and H.C. Man, “Hydrothermal synthesis of Ag-ZrO2/r-GO coating on CoCrMo substrate,” Mater. Lett., 228, 314–317 (2018).

    Article  Google Scholar 

  24. Zh. Song, C. Duan, M. Shi, S. Li, and Y. Guan, “One-step preparation of ZrO2/SiO2 microspheres and modification with d-fructose 1, 6-bisphosphate as stationary phase for hydrophilicinteraction chromatography,” J. Chromatogr. (2017), URL: [https://doi.org/10.1016/j.chroma.2017.09.046].

  25. O. Vasylkiv, Y. Sakka, Y. Maeda, and V.V. Skorokhod, “Nano-engineering of zirconia-noble metals composites,” J. Eur. Ceram. Soc., 24, No. 2, 469–473 (2004).

    Article  Google Scholar 

  26. O. Vasylkiv, Y. Sakka, Y. Maeda, and V.V. Skorokhod, “Sonochemical preparation and properties of Pt–3Y-TZP nano-composites,” J. Am. Ceram. Soc., 88, No. 3, 639–644 (2005).

    Article  Google Scholar 

  27. O.V. Almiasheva, A.Yu. Postnov, N.V. Maltseva, and E.A. Vlasov, “Thermally stable catalyst based on ZrO2–Al2O3 nanocomposite for hydrogen oxidation,” Nanosyst. Fiz. Khim. Mat., 3, No. 6, 75–82 (2012).

    Google Scholar 

  28. Zh. Song, P. Ning, Q. Zhang, H. Li, J. Zhang, Y. Wang, X. Liu, and Z. Huang, “Activity and hydrothermal stability of CeO2–ZrO2–WO3 for the selective catalytic reduction of NOx with NH3,” J. Environ. Sci. (2015), URL: [https://doi.org/10.1016/j.jes.2015.06.010].

  29. P. Ning, Z. Song, H.Li, Q. Zhang, X. Liu, J. Zhang, X. Tang, and Z. Huang, “Selective catalytic reduction of NO with NH3 over CeO2–ZrO2–WO3 catalysts prepared by different methods,” Appl. Surf. Sci. (2015), URL: [https://doi.org/10.1016/j.apsusc.2015.01.118].

  30. A.I. Ramos-Guerra, I. Martínez-Merlín, and C. Falcony, “The role of the stabilizing agent on the structural and luminescent properties of hydrothermally synthesized ZrO2: Tb3+phosphors,” Ceram. Int. (2018), URL: [https://doi.org/10.1016/j.ceramint.2018.04.216].

  31. M.A.I. Mohamed, V.-D. Dao, S.Y. Ahmed, M.M. Hamouda, A.Y. Mohamed, Y.K. Muhammad, H.-S. Choi, and A.M.B. Nasser, “Physicochemical and photo-electrochemical characterization of novel N-doped nanocomposite ZrO2/TiO2 photoanode towards technology of dye-sensitized solar cells,” Mater. Charact. (2017), URL: [doi: https://doi.org/10.1016/j.matchar.2017.03.014].

  32. A.V. Shevchenko, E.V. Dudnik, V.V. Tsukrenko, A.K. Ruban, V.P. Red’ko, and L.M. Lopato, “Microstructural design of bioinert composites in the ZrO2–Y2O3–CeO2–Al2O3–CoC system,” Powder Metall. Met. Ceram., 51, Nos. 11–12, 724–733 (2012).

    Google Scholar 

  33. A.V. Shevchenko, E.V. Dudnik, A.K. Ruban, V.M. Vereschaka, V.P. Red’ko, and L.M. Lopato, “Hydrothermal synthesis of nanocrystalline powders in the ZrO2−Y2O3−CeO2 system,” Powder Metall. Met. Ceram., 46, Nos. 1–2, 18–24 (2007).

    Article  Google Scholar 

  34. I.M. Vasserman, Chemical Solution Deposition [in Russian], Leningrad (1980), p. 208.

  35. O.Yu. Kurapova, V.G. Konakov, S.N. Golubev, and V.M. Ushakov, “Interaction between the synthesis procedure, phase formation, and particle size of precursor powders for ceramics with final composition 9CaO91ZrO2,” Nov. Ogneupory, No. 4, 47–52 (2014).

  36. O.Yu. Kurapova, V.G. Konakov, S.N. Golubev, and V.M. Ushakov, “Phase formation and stability of solid solutions in nanosized zirconia dioxide precursors produced by cryochemical methods,” Vest. SPb Gos. Univ. Ser. 4: Fiz. Khim., 3(61), 296–310 (2016).

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to V.M. Pavlikov, PhD in Chemical Sciences, for the differential thermal analysis and to L.D. Bilash for determining the powders’ specific surface area.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. O. Marek.

Additional information

Translated from Poroshkova Metallurgiya, Vol. 58, Nos. 3–4 (526), pp. 3–12, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marek, I.O., Ruban, O.K., Redko, V.P. et al. Physicochemical Properties of Hydrothermal Nanocrystalline ZrO2–Y2O3–CeO2 Powders. Powder Metall Met Ceram 58, 125–132 (2019). https://doi.org/10.1007/s11106-019-00055-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11106-019-00055-2

Keywords

Navigation