Skip to main content
Log in

An inventory model for two-parameter Weibull distributed ameliorating and deteriorating items with stock and advertisement frequency dependent demand under trade credit and preservation technology

  • Theoretical Article
  • Published:
OPSEARCH Aims and scope Submit manuscript

Abstract

In this article, an inventory model is studied for ameliorating and deteriorating items with demand dependent on stock and advertisement frequency. The rate of amelioration and deterioration is represented by two-parameter Weibull distribution. The retailer invests in preservation technology to lower the rate of deterioration. It is considered that the supplier offers a trade credit period to the retailer to settle the account. Shortages in the model are allowed and partially backlogged. The primary objective of the present study is to determine the optimal advertisement frequency, preservation technology investment, cycle length, and the time of occurrence of the maximum positive level of stock and shortage that maximize the total profit per unit time of the system. An algorithm is provided to obtain the optimal solution from the developed model. Several numerical examples are provided under different situations to illustrate the model, while the concavity of the total profit function is represented graphically. Sensitivity analysis is performed to analyze the influence of the parameters on the optimal solution, while various observations and managerial insights obtained from the sensitivity analysis are discussed accordingly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Availability of data and materials

The data available in this study are included in the reference section of the article.

References

  1. Adak, S., Mahapatra, G.S.: Effect of reliability on varying demand and holding cost on inventory system incorporating probabilistic deterioration. J. Ind. Manag. Optim. 18(1), 173–193 (2022)

    Article  Google Scholar 

  2. Aggarwal, S.P., Jaggi, C.K.: Ordering policies of deteriorating items under permissible delay in payments. J. Oper. Res. Soc. 46(5), 658–662 (1995)

    Article  Google Scholar 

  3. Bardhan, S., Pal, H., Giri, B.C.: Optimal replenishment policy and preservation technology investment for a non-instantaneous deteriorating item with stock-dependent demand. Oper. Res. Int. J. 19(2), 347–368 (2019)

    Article  Google Scholar 

  4. Cárdenas-Barrón, L.E., Shaikh, A.A., Tiwari, S., Treviño-Garza, G.: An EOQ inventory model with nonlinear stock dependent holding cost, nonlinear stock dependent demand and trade credit. Comput. Ind. Eng. 139(1), 105557 (2020)

    Article  Google Scholar 

  5. Chang, C.T., Teng, J.T., Goyal, S.K.: Optimal replenishment policies for non-instantaneous deteriorating items with stock-dependent demand. Int. J. Prod. Econ. 123(1), 62–68 (2010)

    Article  Google Scholar 

  6. Chang, H.J., Hung, C.H., Dye, C.Y.: An inventory model for deteriorating items with linear trend demand under the condition of permissible delay in payments. Prod. Plan. Control. 12(3), 274–282 (2001)

    Article  Google Scholar 

  7. Chowdhury, R.R., Ghosh, S.K., Chaudhuri, K.S.: An inventory model for perishable items with stock and advertisement sensitive demand. Int. J. Manag. Sci. Eng. Manag. 9(3), 169–177 (2014)

    Google Scholar 

  8. Das, B.C., Das, B., Mondal, S.K.: An integrated inventory model with delay in payment for deteriorating item under Weibull distribution and advertisement cum price-dependent demand. Int. J. Oper. Res. 20(3), 341–368 (2014)

    Article  Google Scholar 

  9. Das, S.C., Manna, A.K., Rahman, M.S., Shaikh, A.A., Bhunia, A.K.: An inventory model for non-instantaneous deteriorating items with preservation technology and multiple credit periods-based trade credit financing via particle swarm optimization. Soft. Comput. 25(7), 5365–5384 (2021)

    Article  Google Scholar 

  10. Das, S.C., Zidan, A.M., Manna, A.K., Shaikh, A.A., Bhunia, A.K.: An application of preservation technology in inventory control system with price dependent demand and partial backlogging. Alex. Eng. J. 59(3), 1359–1369 (2020)

    Article  Google Scholar 

  11. Duan, Y., Li, G., Tien, J.M., Huo, J.: Inventory models for perishable items with inventory level dependent demand rate. Appl. Math. Model. 36(10), 5015–5028 (2012)

    Article  Google Scholar 

  12. Dye, C.Y., Hsieh, T.P.: An optimal replenishment policy for deteriorating items with effective investment in preservation technology. Eur. J. Oper. Res. 218(1), 106–112 (2012)

    Article  Google Scholar 

  13. Dye, C.Y., Ouyang, L.Y.: An EOQ model for perishable items under stock-dependent selling rate and time-dependent partial backlogging. Eur. J. Oper. Res. 163(3), 776–783 (2005)

    Article  Google Scholar 

  14. Geetha, K.V., Udayakumar, R.: Optimal lot sizing policy for non-instantaneous deteriorating items with price and advertisement dependent demand under partial backlogging. Int. J. Appl. Comput. Math. 2(2), 171–193 (2016)

    Article  Google Scholar 

  15. Ghosh, S.K., Sarkar, T., Chaudhuri, K.: A multi-item inventory model for deteriorating items in limited storage space with stock-dependent demand. Am. J. Math. Manag. Sci. 34(2), 147–161 (2015)

    Google Scholar 

  16. Giri, B.C., Dash, A.: Optimal batch shipment policy for an imperfect production system under price-, advertisement- and green-sensitive demand. J. Manag. Anal. 9(1), 86–119 (2022)

    Google Scholar 

  17. Giri, B.C., Pal, S., Goswami, A., Chaudhuri, K.S.: An inventory model for deteriorating items with stock-dependent demand rate. Eur. J. Oper. Res. 95(3), 604–610 (1996)

    Article  Google Scholar 

  18. Goyal, S.K.: Economic order quantity under conditions of permissible delay in payments. J. Oper. Res. Soc. 36(4), 335–338 (1985)

    Article  Google Scholar 

  19. Goyal, S.K., Singh, S.R., Dem, H.: Production policy for ameliorating/deteriorating items with ramp type demand. Int. J. Procure. Manag. 6(4), 444–465 (2013)

    Google Scholar 

  20. Hatibaruah, A., Saha, S.: An inventory model for ameliorating and deteriorating items with stock and price dependent demand and time dependent holding cost with preservation technology investment. Int. J. Math. Oper. Res. 20(1), 99–122 (2021)

    Article  Google Scholar 

  21. Hwang, H.S.: A study on an inventory model for items with Weibull ameliorating. Comput. Ind. Eng. 33(3–4), 701–704 (1997)

    Article  Google Scholar 

  22. Jaggi, C.K., Gupta, M., Kausar, A., Tiwari, S.: Inventory and credit decisions for deteriorating items with displayed stock dependent demand in two-echelon supply chain using Stackelberg and Nash equilibrium solution. Ann. Oper. Res. 274(1–2), 309–329 (2019)

    Article  Google Scholar 

  23. Jiang, W.H., Xu, L., Chen, Z.S., Pedrycz, W., Chin, K.S.: Partial backordering inventory model with limited storage capacity under order-size dependent trade credit. Technol. Econ. Dev. Econ. 28(1), 131–162 (2022)

    Article  Google Scholar 

  24. Khan, M.A.A., Shaikh, A.A., Cárdenas-Barrón, L.E., Mashud, A.H.M., Treviño-Garza, G., Céspedes-Mota, A.: An inventory model for non-instantaneously deteriorating items with nonlinear stock-dependent demand, hybrid payment scheme and partially backlogged shortages. Mathematics 10(3), 1–23 (2022)

    Article  Google Scholar 

  25. Khan, M.A.A., Shaikh, A.A., Konstantaras, I., Bhunia, A.K., Cárdenas-Barrón, L.E.: Inventory models for perishable items with advanced payment, linearly time-dependent holding cost and demand dependent on advertisement and selling price. Int. J. Prod. Econ. 230(1), 107804 (2020)

    Article  Google Scholar 

  26. Khanra, S., Ghosh, S.K., Chaudhuri, K.S.: An EOQ model for a deteriorating item with time dependent quadratic demand under permissible delay in payment. Appl. Math. Comput. 218(1), 1–9 (2011)

    Google Scholar 

  27. Khedlekar, U.K., Singh, P.: Optimal pricing policy for ameliorating items considering time- and price sensitive demand. Int. J. Model. Simul. 42(3), 426–440 (2022)

    Article  Google Scholar 

  28. Law, S.T., Wee, H.M.: An integrated production-inventory model for ameliorating and deteriorating items taking account of time discounting. Math. Comput. Model. 43(5–6), 673–685 (2006)

    Article  Google Scholar 

  29. Lee, Y.P., Dye, C.Y.: An inventory model for deteriorating items under stock-dependent demand and controllable deterioration rate. Comput. Ind. Eng. 63(2), 474–482 (2012)

    Article  Google Scholar 

  30. Li, G., He, X., Zhou, J., Wu, H.: Pricing, replenishment and preservation technology investment decisions for non-instantaneous deteriorating items. Omega 84(1), 114–126 (2019)

    Article  Google Scholar 

  31. Mahata, G.C., De, S.K.: An EOQ inventory system of ameliorating items for price dependent demand rate under retailer partial trade credit policy. Opsearch 53(4), 889–916 (2016)

    Article  Google Scholar 

  32. Mishra, P., Talati, I.: Quantity discount for integrated supply chain model with back order and controllable deterioration rate. Yugosl. J. Oper. Res. 28(3), 355–369 (2018)

    Article  Google Scholar 

  33. Mishra, U., Cárdenas-Barrón, L.E., Tiwari, S., Shaikh, A.A., Treviño-Garza, G.: An inventory model under price and stock dependent demand for controllable deterioration rate with shortages and preservation technology investment. Ann. Oper. Res. 254(1–2), 165–190 (2017)

    Article  Google Scholar 

  34. Mondal, B., Bhunia, A.K., Maiti, M.: An inventory system of ameliorating items for price dependent demand rate. Comput. Ind. Eng. 45(3), 443–456 (2003)

    Article  Google Scholar 

  35. Mondal, R., Shaikh, A.A., Bhunia, A.K.: Crisp and interval inventory models for ameliorating item with Weibull distributed amelioration and deterioration via different variants of quantum behaved particle swarm optimization-based techniques. Math. Comput. Model. Dyn. Syst. 25(6), 602–626 (2019)

    Article  Google Scholar 

  36. Moon, I., Giri, B.C., Ko, B.: Economic order quantity models for ameliorating/deteriorating items under inflation and time discounting. Eur. J. Oper. Res. 162(3), 773–785 (2005)

    Article  Google Scholar 

  37. Nodoust, S., Mirzazadeh, A., Weber, G.-W.: An evidential reasoning approach for production modeling with deteriorating and ameliorating items. Oper. Res. Int. J. 20(1), 1–19 (2020)

    Article  Google Scholar 

  38. Padhy, B., Samanta, P.N., Paikray, S.K., Misra, U.K.: An EOQ model for items having fuzzy amelioration and deterioration. Appl. Math. Inf. Sci. 16(2), 353–360 (2022)

    Google Scholar 

  39. Palanivel, M., Uthayakumar, R.: Finite horizon EOQ model for non-instantaneous deteriorating items with price and advertisement dependent demand and partial backlogging under inflation. Int. J. Syst. Sci. 46(10), 1762–1773 (2015)

    Article  Google Scholar 

  40. Pervin, M., Roy, S.K., Weber, G.W.: A two-echelon inventory model with stock-dependent demand and variable holding cost for deteriorating items. Numer. Algebra, Control. Optim. 7(1), 21–50 (2017)

    Article  Google Scholar 

  41. Priyamvada, Gautam, P., Khanna, A.: Sustainable production strategies for deteriorating and imperfect quality items with an investment in preservation technology. Int. J. Syst. Assur. Eng. Manag. 12(5), 910–918 (2021)

    Article  Google Scholar 

  42. Rahaman, M., Mondal, S.P., Alam, S., De, S.K.: A study of a lock fuzzy EPQ model with deterioration and stock and unit selling price-dependent demand using preservation technology. Soft. Comput. 26(6), 2721–2740 (2022)

    Article  Google Scholar 

  43. Rahman, M.S., Khan, M.A.A., Halim, M.A., Nofal, T.A., Shaikh, A.A., Mahmoud, E.E.: Hybrid price and stock dependent inventory model for perishable goods with advance payment related discount facilities under preservation technology. Alex. Eng. J. 60(3), 3455–3465 (2021)

    Article  Google Scholar 

  44. Rai, V.: Trade credit policy between supplier-manufacturer- retailer for ameliorating/deteriorating items. J. Oper. Res. Soc. China. 8(1), 79–103 (2020)

    Article  Google Scholar 

  45. Rapolu, C.N., Kandpal, D.H.: Joint pricing, advertisement, preservation technology investment and inventory policies for non-instantaneous deteriorating items under trade credit. Opsearch 57(2), 274–300 (2020)

    Article  Google Scholar 

  46. Roy, D., Hasan, S.M.M., Rashid, M.M., Hezam, I.M., Al-Amin, M., Roy, T.C., Alrasheedi, A.F., Mashud, A.H.M.: A sustainable advance payment scheme for deteriorating items with preservation technology. Processes 10(3), 1–20 (2022)

    Article  Google Scholar 

  47. Saha, S., Chakrabarti, T.: Two-echelon supply chain model for deteriorating items in an imperfect production system with advertisement and stock dependent demand under trade credit. Int. J. Supply Oper. Manag. 5(3), 207–217 (2018)

    Google Scholar 

  48. Sana, S.S.: Demand influenced by enterprises’ initiatives - A multi-item EOQ model of deteriorating and ameliorating items. Math. Comput. Model. 52(1–2), 284–302 (2010)

    Article  Google Scholar 

  49. Sana, S.S., Chaudhuri, K.S.: An inventory model for stock with advertising sensitive demand. IMA J. Manag. Math. 19(1), 51–62 (2008)

    Article  Google Scholar 

  50. Sana, S.S., Sarkar, B.K., Chaudhuri, K., Purohit, D.: The effect of stock, price and advertising on demand - an EOQ model. Int. J. Model. Identif. Control. 6(1), 81–88 (2009)

    Article  Google Scholar 

  51. Sarkar, B., Sarkar, S.: An improved inventory model with partial backlogging, time varying deterioration and stock-dependent demand. Econ. Model. 30(1), 924–932 (2013)

    Article  Google Scholar 

  52. Shah, N.H., Patel, E., Rabari, K.: Vendor-buyer pollution sensitive inventory system for deteriorating items. Process Integr. Optim. Sustain. 6(2), 285–293 (2022)

    Article  Google Scholar 

  53. Shah, N.H., Rabari, K., Patel, E.: An inventory model with stock-dependent demand under trade-credit policy and fixed life-time. Int. J. Procure. Manag. 14(2), 264–275 (2021)

    Google Scholar 

  54. Shah, N.H., Shah, P.H., Patel, M.B.: Retailer’s inventory decisions with promotional efforts and preservation technology investments when supplier offers quantity discounts. Opsearch 58(4), 1116–1132 (2021)

    Article  Google Scholar 

  55. Shah, N.H., Soni, H.N., Patel, K.A.: Optimizing inventory and marketing policy for non-instantaneous deteriorating items with generalized type deterioration and holding cost rates. Omega 41(2), 421–430 (2013)

    Article  Google Scholar 

  56. Shah, N.H., Vaghela, C.R.: Economic order quantity for deteriorating items under inflation with time and advertisement dependent demand. Opsearch 54(1), 168–180 (2017)

    Article  Google Scholar 

  57. Shaikh, A.A., Cárdenas-Barrón, L.E., Bhunia, A.K., Tiwari, S.: An inventory model of a three parameter Weibull distributed deteriorating item with variable demand dependent on price and frequency of advertisement under trade credit. RAIRO-Oper. Res. 53(3), 903–916 (2019)

    Article  Google Scholar 

  58. Shaikh, A.A., Panda, G.C., Khan, M.A.A., Mashud, A.H.M., Biswas, A.: An inventory model for deteriorating items with preservation facility of ramp type demand and trade credit. Int. J. Math. Oper. Res. 17(4), 514–551 (2020)

    Article  Google Scholar 

  59. Singh, S.R., Khurana, D., Tayal, S.: An economic order quantity model for deteriorating products having stock dependent demand with trade credit period and preservation technology. Uncertain Supply Chain Manag. 4(1), 29–42 (2016)

    Article  Google Scholar 

  60. Singh, T., Pattanayak, H., Nayak, A.K., Sethy, N.N.: An EOQ inventory model with stock dependent demand under permissible delay in payment. Int. J. Logist. Syst. Manag. 28(1), 24–41 (2017)

    Google Scholar 

  61. Srivastava, H.M., Liao, J.J., Huang, K.N., Chung, K.J., Lin, S.D., Lee, S.F.: Supply chain inventory model for deteriorating products with maximum lifetime under trade-credit financing. TWMS J. Pure Appl. Math. 13(1), 53–71 (2022)

    Google Scholar 

  62. Taleizadeh, A.A., Aliabadi, L., Thaichon, P.: A sustainable inventory system with price-sensitive demand and carbon emissions under partial trade credit and partial backordering. Oper. Res. Int. J. (2022). https://doi.org/10.1007/s12351-021-00683-w

  63. Tiwari, S., Jaggi, C.K., Gupta, M., Cárdenas-Barrón, L.E.: Optimal pricing and lot-sizing policy for supply chain system with deteriorating items under limited storage capacity. Int. J. Prod. Econ. 200(1), 278–290 (2018)

    Article  Google Scholar 

  64. Tripathi, R.P.: EOQ model with stock level dependent demand rate and inflation under trade credits. Int. J. Manag. Sci. Eng. Manag. 8(2), 102–108 (2013)

    Google Scholar 

  65. Tripathi, R.P., Singh, D., Aneja, S.: Inventory models for stock-dependent demand and time varying holding cost under different trade credits. Yugosl. J. Oper. Res. 28(1), 139–151 (2018)

    Article  Google Scholar 

  66. Udayakumar, R., Geetha, K.V., Sana, S.S.: Economic ordering policy for non-instantaneous deteriorating items with price and advertisement dependent demand and permissible delay in payment under inflation. Math. Methods Appl. Sci. 44(9), 7697–7721 (2021)

    Article  Google Scholar 

  67. Vandana, Sana, S.S.: A two-echelon inventory model for ameliorating/deteriorating items with Single Vendor and multi-buyers. Proc. Natl. Acad. Sci. India Sect. A Phys. Sci. 90(4), 601–614 (2020)

    Article  Google Scholar 

  68. Vandana, Srivastava, H.M.: An inventory model for ameliorating/deteriorating items with trapezoidal demand and complete backlogging under inflation and time discounting. Math. Methods Appl. Sci. 40(8), 2980–2993 (2017)

    Article  Google Scholar 

  69. Wee, H.M., Lo, S.T., Yu, J., Chen, H.C.: An inventory model for ameliorating and deteriorating items taking account of time value of money and finite planning horizon. Int. J. Syst. Sci. 39(8), 801–807 (2008)

    Article  Google Scholar 

  70. Wu, K.S., Ouyang, L.Y., Yang, C.T.: An optimal replenishment policy for non-instantaneous deteriorating items with stock-dependent demand and partial backlogging. Int. J. Prod. Econ. 101(2), 369–384 (2006)

    Article  Google Scholar 

  71. Yang, C.T.: An inventory model with both stock-dependent demand rate and stock-dependent holding cost rate. Int. J. Prod. Econ. 155(1), 214–221 (2014)

    Article  Google Scholar 

  72. Zhang, J., Bai, Z., Tang, W.: Optimal pricing policy for deteriorating items with preservation technology investment. J. Ind. Manag. Optim. 10(4), 1261–1277 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

The authors want to thank the Department of Mathematics, Assam University, Silchar, for the infrastructural support provided for conducting this research work.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

AH formulated the mathematical model, performed all the numerical calculations, and obtained various results from the model. SS gave the idea about the model and supervised the research work, including the design and editing of the manuscript.

Corresponding author

Correspondence to Ajoy Hatibaruah.

Ethics declarations

Conflict of interest

The authors don’t have any competing interests.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

\(TP_{1}(A,\xi ,T_{1},T)\) given in Eq. (23) can be written as

$$\begin{aligned} TP_{1}(A,\xi ,T_{1},T)&=\frac{1}{T}\left[ A^{\lambda }f_{1} (\xi ,T_{1},T)+A^{2\lambda }f_{2}(\xi ,T_{1})+A^{3\lambda }f_{3}(T_{1})\right. \\&\quad +\left. f_{4}(\xi ,T_{1},T) - C_{7}A \right] \end{aligned}$$

where,

$$\begin{aligned} f_{1}(\xi ,T_{1},T)&=p\left\{ a(1-\eta )T_{1} +\frac{a}{\rho }\log \{1+\rho (T-T_{1})\}\right\} -\frac{C_{2}\alpha a}{\beta +1}\left\{ (1-\eta ^{\beta })\right. \nonumber \\&\quad -\left. \beta \eta ^{\beta }(1-\eta )\right\} T_{1}^{\beta +1} -\frac{C_{3} \left( 1-m(\xi )\right) xa}{y+1} \left\{ (1-\eta ^{y})-y\eta ^{y}(1-\eta )\right\} T_{1}^{y+1}\nonumber \\&\quad - ha \left[ \frac{1}{2}(1-\eta )^{2}T_{1}^{2} +\frac{\{1-m(\xi )\}x}{(y+1)(y+2)} \left\{ y(1-\eta ^{y+2})\right. \right. \nonumber \\&\quad - \left. \left. (y+2)\eta (1-\eta ^{y}) \right\} T_{1}^{y+2} +\frac{\alpha }{\beta +1} \left\{ \eta (1-\eta ^{\beta }) -\frac{\beta }{\beta +2}(1-\eta ^{\beta +2}) \right\} T_{1}^{\beta +2}\right] \nonumber \\&\quad - \left( \frac{C_{4}a}{\rho ^{2}}+\frac{C_{5}a}{\rho } \right) \left[ \rho (T-T_{1})-\log \{1+\rho (T-T_{1})\} \right] \nonumber \\&\quad - \frac{C_{6}a}{\rho }\log \{1+\rho (T-T_{1})\} -C_{6}I_{c}a\left[ \frac{1}{2}(T_{1}-M)^{2}\right. \nonumber \\&\quad + \frac{\{1-m(\xi )\}x}{(y+1)(y+2)} \left\{ y(T_{1}^{y+2}-M^{y+2})- (y+2)T_{1} M(T_{1}^{y}-M^{y}) \right\} \nonumber \\&\quad + \left. \frac{\alpha }{\beta +1}\left\{ T_{1} M(T_{1}^{\beta }-M^{\beta })-\frac{\beta }{\beta +2} (T_{1}^{\beta +2}-M^{\beta +2})\right\} \right] \nonumber \\&\quad + \frac{pI_{e}a}{2}(M^{2}-\eta ^{2}T_{1}^{2}) \end{aligned}$$
(40)
$$\begin{aligned} f_{2}(\xi ,T_{1})&= pab \left\{ \frac{1}{2}(1-\eta )^{2}T_{1}^{2} +\frac{\{1-m(\xi )\}x}{(y+1)(y+2)}\left\{ y(1-\eta ^{y+2})-\eta (y+2) (1-\eta ^{y}) \right\} T_{1}^{y+2}\right. \nonumber \\&\quad +\left. \frac{\alpha }{\beta +1}\{\eta (1-\eta ^{\beta }) -\frac{\beta }{\beta +2}(1-\eta ^{\beta +2})\}T_{1}^{\beta +2}\right\} - \frac{hab}{6}(1-\eta )^{3}T_{1}^{3} \nonumber \\&\quad - \frac{C_{6}I_{c}ab}{6}(T_{1}-M)^{3}+pI_{e}ab \left[ \frac{1}{6}\left\{ 3T_{1}(M^{2}-\eta ^{2}T_{1}^{2})\right. \right. \nonumber \\&\quad -\left. 2(M^{3}-\eta ^{3}T_{1}^{3})\right\} +\frac{\{1-m(\xi )\}x}{y+1} \left\{ \frac{1}{2}T_{1}^{y+1}(M^{2}-\eta ^{2}T_{1}^{2})\right. \nonumber \\&\quad +\left. \frac{y}{y+3}(M^{y+3}-\eta ^{y+3}T_{1}^{y+3}) -\left( \frac{y+1}{y+2}\right) T_{1}(M^{y+2}-\eta ^{y+2} T_{1}^{y+2})\right\} \nonumber \\&\quad + \frac{\alpha }{\beta +1}\left\{ \left( \frac{\beta +1}{\beta +2}\right) T_{1}(M^{\beta +2}-\eta ^{\beta +2}T_{1}^{\beta +2})\right. \nonumber \\&\quad -\left. \left. \frac{\beta }{\beta +3}(M^{\beta +3}-\eta ^{\beta +3} T_{1}^{\beta +3})-\frac{1}{2}T_{1}^{\beta +1} (M^{2}-\eta ^{2}T_{1}^{2})\right\} \right] \end{aligned}$$
(41)
$$\begin{aligned} f_{3}(T_{1})&=\frac{pab^{2}(1-\eta )^{3}}{6}T_{1}^{3} +\frac{pI_{e}ab^{2}}{24}\{ 6T_{1}^{2}(M^{2}-\eta ^{2} T_{1}^{2})+3(M^{4}-\eta ^{4}T_{1}^{4}) \nonumber \\&\quad -8T_{1}(M^{3}-\eta ^{3}T_{1}^{3})\} \end{aligned}$$
(42)

and

$$\begin{aligned} f_{4}(\xi ,T_{1},T)&= -C_{1}-C_{2}\alpha I_{0} \eta ^{\beta }T_{1}^{\beta }-C_{3} \left( 1-m(\xi )\right) x I_{0}\eta ^{y}T_{1}^{y} \nonumber \\&\quad -hI_{0}\left[ \eta T_{1} +\frac{\alpha }{\beta +1} \eta ^{\beta +1}T_{1}^{\beta +1}-\frac{\{1-m(\xi )\}x}{y+1} \eta ^{y+1}T_{1}^{y+1}\right] \nonumber \\&\quad - C_{6}I_{0}-\xi T \end{aligned}$$
(43)

Appendix 2

\(TP_{1}(A,\xi ,T_{1},T)\) given in Eq. (23) can be written as

$$\begin{aligned} TP_{1}(A,\xi ,T_{1},T)= \frac{Z}{T} \end{aligned}$$

where,

$$\begin{aligned} Z&=p\left[ aA^{\lambda }\left[ (1-\eta )T_{1}+bA^{\lambda } \left[ \frac{1}{2}(1-\eta )^{2}T_{1}^{2}+\frac{\{1-m(\xi )\}x}{(y+1)(y+2)}\left\{ y(1-\eta ^{y+2})\right. \right. \right. \right. \nonumber \\&\quad -\left. \eta (y+2)(1-\eta ^{y}) \right\} T_{1}^{y+2} +\frac{bA^{\lambda }}{6}(1-\eta )^{3}T_{1}^{3} +\frac{\alpha }{\beta +1}\{\eta (1-\eta ^{\beta })\nonumber \\&\quad -\left. \left. \left. \frac{\beta }{\beta +2}(1-\eta ^{\beta +2})\} T_{1}^{\beta +2} \right] \right] +\frac{aA^{\lambda }}{\rho } \log \{1+\rho (T-T_{1})\}\right] \nonumber \\&\quad -C_{1} -C_{2}\alpha \left[ I_{0}\eta ^{\beta } T_{1}^{\beta }+\frac{aA^{\lambda }}{\beta +1} \left\{ (1-\eta ^{\beta })-\beta \eta ^{\beta }(1-\eta )\right\} T_{1}^{\beta +1}\right] \nonumber \\&\quad -C_{3} \left( 1-m(\xi )\right) x\left[ I_{0}\eta ^{y} T_{1}^{y}+\frac{aA^{\lambda }}{y+1}\left\{ (1-\eta ^{y}) -y\eta ^{y}(1-\eta )\right\} T_{1}^{y+1}\right] \nonumber \\&\quad -h\left[ I_{0}\left[ \eta T_{1} +\frac{\alpha }{\beta +1} \eta ^{\beta +1}T_{1}^{\beta +1}-\frac{\{1-m(\xi )\}x}{y+1} \eta ^{y+1}T_{1}^{y+1}\right] \right. \nonumber \\&\quad + aA^{\lambda }\left[ \frac{1}{2}(1-\eta )^{2}T_{1}^{2} +\frac{\{1-m(\xi )\}x}{(y+1)(y+2)} \left\{ y(1-\eta ^{y+2})\right. \right. \nonumber \\&\quad -\left. (y+2)\eta (1-\eta ^{y}) \right\} T_{1}^{y+2} +\frac{bA^{\lambda }}{6}(1-\eta )^{3}T_{1}^{3} +\frac{\alpha }{\beta +1} \left\{ \eta (1-\eta ^{\beta })\right. \nonumber \\&\quad -\left. \left. \left. \frac{\beta }{\beta +2}(1-\eta ^{\beta +2})\right\} T_{1}^{\beta +2}\right] \right] -\left( \frac{C_{4}aA^{\lambda }}{\rho ^{2}} +\frac{C_{5}aA^{\lambda }}{\rho } \right) \left[ \rho (T-T_{1})\right. \nonumber \\&\quad -\left. \log \{1+\rho (T-T_{1})\}\right] - C_{6}\left[ I_{0} +\frac{aA^{\lambda }}{\rho }\log \{1+\rho (T-T_{1})\}\right] \nonumber \\&\quad - \xi T - C_{7}A- C_{6}I_{c}aA^{\lambda } \left[ \frac{1}{2}(T_{1}-M)^{2}\right. \nonumber \\&\quad + \frac{\{1-m(\xi )\}x}{(y+1)(y+2)} \left\{ y(T_{1}^{y+2}-M^{y+2})- (y+2)T_{1} M(T_{1}^{y}-M^{y}) \right\} \nonumber \\&\quad +\frac{bA^{\lambda }}{6}(T_{1}-M)^{3} +\frac{\alpha }{\beta +1}\left\{ T_{1} M(T_{1}^{\beta }-M^{\beta })\right. \nonumber \\&\quad -\left. \left. \frac{\beta }{\beta +2} (T_{1}^{\beta +2}-M^{\beta +2})\right\} \right] + pI_{e}A^{\lambda }\left[ \frac{a}{2}(M^{2} -\eta ^{2}T_{1}^{2})\right. \nonumber \\&\quad +baA^{\lambda }\left[ \frac{1}{6}\left\{ 3T_{1}(M^{2}-\eta ^{2} T_{1}^{2})- 2(M^{3}-\eta ^{3}T_{1}^{3})\right\} \right. \nonumber \\&\quad +\frac{\{1-m(\xi )\}x}{y+1}\left\{ \frac{1}{2}T_{1}^{y+1} (M^{2}-\eta ^{2}T_{1}^{2})+\frac{y}{y+3}(M^{y+3}-\eta ^{y+3} T_{1}^{y+3})\right. \nonumber \\&\quad -\left. \left( \frac{y+1}{y+2}\right) T_{1}(M^{y+2} -\eta ^{y+2}T_{1}^{y+2})\right\} +\frac{bA^{\lambda }}{24} \left\{ 6T_{1}^{2}(M^{2}-\eta ^{2}T_{1}^{2})\right. \nonumber \\&\quad +\left. 3(M^{4}-\eta ^{4}T_{1}^{4})-8T_{1}(M^{3} -\eta ^{3}T_{1}^{3})\right\} \nonumber \\&\quad + \frac{\alpha }{\beta +1} \left\{ \left( \frac{\beta +1}{\beta +2}\right) T_{1} (M^{\beta +2}-\eta ^{\beta +2}T_{1}^{\beta +2})\right. \nonumber \\&\quad - \left. \left. \left. \frac{\beta }{\beta +3}(M^{\beta +3}-\eta ^{\beta +3} T_{1}^{\beta +3})-\frac{1}{2}T_{1}^{\beta +1} (M^{2} -\eta ^{2}T_{1}^{2})\right\} \right] \right] \end{aligned}$$
(44)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hatibaruah, A., Saha, S. An inventory model for two-parameter Weibull distributed ameliorating and deteriorating items with stock and advertisement frequency dependent demand under trade credit and preservation technology. OPSEARCH 60, 951–1002 (2023). https://doi.org/10.1007/s12597-023-00629-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12597-023-00629-0

Keywords

Navigation