Skip to main content
Log in

Trade Credit Policy Between Supplier–Manufacturer–Retailer for Ameliorating/Deteriorating Items

  • Published:
Journal of the Operations Research Society of China Aims and scope Submit manuscript

Abstract

This paper is related to the advancement of the inventory models for ameliorating items and focused on the real-life business situation as with the time the deterioration rate of ameliorating items is increased. In the global world, every supply chain entities as suppliers/manufacturers/retailers want to increase the consumption of their goods without any losses. For this, he/she tries to lure manufacturer/retailers by offering some discounts, i.e. credit period for settling the account. The problem states that the manufacturer purchases the ameliorating items from the supplier, where the supplier offers his/her credit period to settle the account. The manufacturer purchases ameliorating items (like pigs, fishes, ducklings, etc.) and take those items as raw material; when the livestock matures the manufacturer sells it to the retailer and offer credit time for settling the account. Reason to propose the model is when the quantities of livestock become larger, then the manufacturer faces difficulty in maintaining all the livestock. In such a situation, the traditional method (without offering credit period) fails to provide the maximum profit to the manufacturer. Therefore, in order to get maximum profit, the manufacturer needs some more realistic scientific outlook for making decisions. The proposed model provides a more realistic assumption of business markets, by offering credit policy. In the introduced model, manufacturer faces amelioration and deterioration rate simultaneously due to the growth and the death of livestock. The amelioration and deterioration rates are assumed as the Weibull distribution type. Shortages allowed only for the retailer, which is partially backlogged. The main goal of this paper is to minimize the total relevant inventory cost for both the manufacturer and the retailers, by finding the optimal replenishment policy. The mathematical formulation with optimal solutions for manufacturer and retailers are given. Convexity and existence of the proposed model via numerical examples and graphical representations are explained. Finally, the conclusions with some future research direction are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hardly, G., Whitin, I.: Analysis of Inventory System. Prentice Hall, Englewood Cliffs (1963)

    Google Scholar 

  2. Schwartz, R.: An economic model of trade credit. J. Financ. Quant. Anal. 10, 643–657 (1974)

    Article  Google Scholar 

  3. Haley, C.W., Higgins, R.C.: Inventory policy and trade-credit financing. Manag. Sci. 20, 464–471 (1973)

    Article  Google Scholar 

  4. Goyal, S.K.: Economic order quantity under condition of permissible delay in payments. J. Oper. Res. Soc. 36, 335–338 (1985)

    Article  Google Scholar 

  5. Aggarwal, S.P., Jaggi, C.K.: Ordering policies of deteriorating items under permissible delay in payments. J. Oper. Res. Soc. 46, 658–662 (1995)

    Article  Google Scholar 

  6. Jamal, A.M.M., Sarker, B.R., Wang, S.: Optimal payment time for a retailer under permitted delay of payment by the wholesaler. Int. J. Prod. Econ. 66(1), 59–66 (2000)

    Article  Google Scholar 

  7. Khanra, S., Mandal, B., Sarkar, B.: An inventory model with time dependent demand and shortages under trade credit policy. Econ. Model. 35, 349–355 (2013)

    Article  Google Scholar 

  8. Sarkar, B.: An EOQ model with delay in payments and time varying deterioration rate. Math. Comput. Model. 55, 367–377 (2012)

    Article  MathSciNet  Google Scholar 

  9. Sarkar, B.: A production-inventory model with probabilistic deterioration in two-echelon supply chain management. Appl. Math. Model. 37, 3138–3151 (2013)

    Article  MathSciNet  Google Scholar 

  10. Sarkar, B.: An inventory model with reliability in an imperfect production process. Appl. Math. Comput. 218, 4881–4891 (2012)

    MathSciNet  MATH  Google Scholar 

  11. Sarkar, B., Saren, S., Cárdenas-Barrón, L.E.: An inventory model with trade-credit policy and variable deterioration for fixed lifetime products. Ann. Oper. Res. 229, 677–702 (2015)

    Article  MathSciNet  Google Scholar 

  12. Sarkar, B., Sarkar, S.: Variable deterioration and demand–an narrow the space inventory model. Econ. Model. 31, 548–556 (2013)

    Article  Google Scholar 

  13. Sarkar, B., Sana, S.S., Chaudhuri, K.: An inventory model with finite replenishment rateinventory model with finite replenishment rate, trade credit policy and price-discount offer. J. Ind. Eng. 2013, 1–18 (2013)

    Google Scholar 

  14. Sarkar, B.: An EOQ model with delay in payments and stock dependent demand in the presence of imperfect production. Appl. Math. Comput. 218(17), 8295–8308 (2012)

    MathSciNet  MATH  Google Scholar 

  15. Sarkar, B., Gupta, H., Chaudhuri, K., Goyal, S.K.: An integrated inventory model with variable lead time, defective units and delay in payments. Appl. Math. Comput. 237(15), 650–658 (2014)

    MathSciNet  MATH  Google Scholar 

  16. Sett, B.K., Sarkar, B., Goswami, A.: A two-warehouse inventory model with increasing demand and time varying deterioration. Sci. Iran. 19(6), 1969–1977 (2012)

    Article  Google Scholar 

  17. Seifert, D., Seifert, R.W., Protopappa-Sieke, M.: A review of trade credit literature: opportunities for research in operations. Eur. J. Oper. Res. 231, 245–256 (2013)

    Article  Google Scholar 

  18. Hwang, H.S.: A study on an inventory model for items with Weibull ameliorating. Comput. Ind. Eng. 33, 701–704 (1997)

    Article  Google Scholar 

  19. Hwang, H.S.: Inventory models for both deteriorating and ameliorating items. Comput. Ind. Eng. 37, 257–260 (1999)

    Article  Google Scholar 

  20. Law, S.-T., Wee, H.M.: An integrated production-inventory model for ameliorating and deteriorating items taking account of time discounting. Math. Comput. Model. 43, 673–685 (2006)

    Article  Google Scholar 

  21. Mahata, G.C., De, S.K.: An EOQ inventory system of ameliorating items for price dependent demand rate under retailer partial trade credit policy. Opsearch 43(4), 889–916 (2016)

    Article  MathSciNet  Google Scholar 

  22. Mondal, B., Bhunia, A.K., Maiti, M.: An inventory system of ameliorating items for price dependent demand rate. Comput. Ind. Eng. 45, 443–456 (2003)

    Article  Google Scholar 

  23. Moon, I., Giri, B.C., Ko, B.: Economic order quantity models for ameliorating/deteriorating items under inflation and time discounting. Eur. J. Oper. Res. 162, 773–785 (2005)

    Article  MathSciNet  Google Scholar 

  24. Valliathal, M., Uthayakumar, R.: The production-inventory problem for ameliorating/deteriorating items with non-linear shortage cost under inflation and time discounting. Appl. Math. Sci. 4, 289–304 (2010)

    MathSciNet  MATH  Google Scholar 

  25. Vandana, Shrivastava, H.M.: An inventory model of ameliorating/deteriorating items with trapezoidal demand and complete backlogging under inflation and time discounting. Math. Methods Appl. Sci. 40(8), 2980–2993 (2017)

    Article  MathSciNet  Google Scholar 

  26. Wee, H.M., Lo, S.T., Yu, J., Chen, H.C.: An inventory model for ameliorating and deteriorating items taking account of time value of money and finite planning horizon. Int. J. Syst, Sci. 39(8), 801–807 (2008)

    Article  MathSciNet  Google Scholar 

  27. Wee, H.M.: Economic production lot size model for deterioarting items with partial backordering. Comput. Ind. Eng. 24, 449–458 (2003)

    Article  Google Scholar 

  28. Chang, H.J., Dye, C.-Y.: An EOQ model for deteriorating items with time varying demand and partial backlogging. J. Oper. Res. Soc. 50, 1176–1182 (1999)

    Article  Google Scholar 

  29. Ghare, P.M., Shrader, G.F.: A model for exponentially decaying inventories. J. Ind. Eng. 14, 238–243 (1963)

    Google Scholar 

  30. Covert, R.P., Philip, G.C.: An EOQ model for items with weibull distribution. Am. Inst. Ind. Eng. Trans. 5, 323–326 (1973)

    Google Scholar 

  31. Chen, T.H., Chang, H.M.: Optimal ordering and pricing policies for deteriorating items in one-vendor multi-retailer supply chain. Int. J. Adv. Manuf. Technol. 49, 341–355 (2010)

    Article  Google Scholar 

  32. Chung, C.J., Wee, H.M.: Scheduling and replenishment plan for an integrated deteriorating inventory model with stock-dependent selling rate. Int. J. Adv. Manuf. Technol. 35, 665–679 (2008)

    Article  Google Scholar 

  33. Sivashankari, C.K., Panayappan, S.: Production inventory model for two-level production with deteriorative items and shortages. Int. J. Adv. Manuf. Technol. 76, 2003–2014 (2015)

    Article  Google Scholar 

  34. Allen, F., Chakrabarti, R., De, S., Qian, J., Qian, M.: Financing firms in India. J. Financ. Intermed. 21, 409–445 (2012)

    Article  Google Scholar 

  35. Berger, A.N., Udell, G.F.: The economics of small business finance: the roles of private equity and debt markets in the financial growth cycle. J. Bank. Finance 22, 613–674 (1998)

    Article  Google Scholar 

  36. Sarkar, B., Mandal, B., Sarkar, S.: Preservation of deteriorating seasonal products with stock-dependent consumption rate and shortages. J. Ind. Manag. Optim. 13(1), 187–206 (2017)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author wishes to thank the editor and unknown referees, who have patiently gone through the article and whose suggestions have considerably improved its presentation and readability.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vandana Rai.

Appendix

Appendix

1.1 Optimal Solution for Supplier

Case 1. When \(M_\mathrm{manu} \leqslant T_1\)

Since the equation for \(TC_1\) is highly nonlinear, it is not possible to write here the whole expression, and we just give the brief solution procedure. First, we will take the Hessian matrix given below:

$$\begin{aligned} H_m(T_1, T_2) = \tfrac{\partial ^2 TC_1}{\partial T_1^2} \tfrac{\partial ^2 TC_1}{\partial T_2^2} - \bigg (\tfrac{\partial ^2 TC_1}{\partial T_1 \partial T_2}\bigg )^2 > 0. \end{aligned}$$

Because the value of Hessian matrix \(H_m(T_1, T_2)\) is highly nonlinear, it is not possible to show that the direct existence of the equation. The Hessian matrix \(H_m(T_1, T_2) > 0\) only if \(y, \beta > 0\); \((\beta + y) > 0\); \((2 \beta + y) > 1\); \(M_\mathrm{manu} \geqslant 0, T_2 \geqslant 0\); \(\tfrac{M_\mathrm{manu}}{(T_2 - M_\mathrm{manu})} \geqslant 0\); \(M_\mathrm{manu} \ne 0 \); and \( M_\mathrm{manu}^2 \ne M_\mathrm{manu} T_2\).

Case 2. When \(T_1 \leqslant M_\mathrm{manu}\)

For sufficient condition, we partially differentiate \(TC_2(T_1, T_2)\) with respect to \(T_1\) and \(T_2\) and equate it to be zero. Thus, we have

$$\begin{aligned} {}&\tfrac{\partial TC_2}{\partial T_1} \nonumber \\ =&\tfrac{1}{{2 ({T_1}+{T_2})^2}} \biggl ({C_{\mathrm{ma}}} D_m {T_2} ({T_1}+{T_2}) x y \bigg ((a \beta {T_1}^\beta -{T_1}^y x y) \bigg (\tfrac{x {T_1}^y+2}{y} \nonumber \\&-\,\tfrac{2 \alpha {T_1}^\beta }{\beta +y}\bigg ) + y \bigg (-x {T_1}^y+\alpha ({T_1}^\beta +\tfrac{{T_2}^\beta }{\beta +1})-\tfrac{{T_2}^y x}{y+1}+1\bigg ) \bigg (\tfrac{x {T_1}^y+2}{y}-\tfrac{2 \alpha {T_1}^\beta }{\beta +y}\bigg ) \nonumber \\&\quad +\, \bigg (-x {T_1}^y+\alpha \bigg ({T_1}^\beta +\tfrac{{T_2}^\beta }{\beta +1}\bigg )-\tfrac{{T_2}^y x}{y+1}+1\bigg ) \bigg ({T_1}^y x-\tfrac{2 \alpha \beta {T_1}^\beta }{\beta +y}\bigg )\bigg ) {T_1}^{y-1} \nonumber \\&\quad -\, 2 {A_m} - 2 D_m {I_{me}} {S_m} ({M_\mathrm{manu}}-{T_1}-{T_2}) ({T_1}+{T_2}) + D_m {I_{m_e}} {S_m} (2 {M_\mathrm{manu}}-{T_1}-{T_2}) ({T_1}+{T_2})\nonumber \\&\quad - \,2 {C_m} D_m {T_2} \bigg (-x {T_1}^y+\alpha ({T_1}^\beta + \tfrac{{T_2}^\beta }{\beta +1})-\tfrac{{T_2}^y x}{y+1}+1\bigg ) \nonumber \\&\quad +\, 2 D_m {h_m} {T_2} ({T_1}+{T_2}) \bigg ((\alpha \beta {T_1}^\beta -{T_1}^y x y) \bigg (-\tfrac{\alpha {T_1}^\beta }{\beta +1}+\tfrac{x {T_1}^y}{y+1}+1\bigg )+\bigg (-x {T_1}^y \nonumber \\&\quad +\,\alpha \bigg ({T_1}^\beta +\tfrac{{T_2}^\beta }{\beta +1}\bigg )-\tfrac{{T_2}^y x}{y+1}+1\bigg ) \bigg (-\tfrac{\alpha {T_1}^\beta }{\beta +1}+\tfrac{x {T_1}^y}{y+1}+1\bigg )+\bigg (\tfrac{{T_1}^y x y}{y+1}\nonumber \\&\quad -\,\tfrac{\alpha \beta {T_1}^\beta }{\beta +1}\bigg ) \bigg (-x {T_1}^y+\alpha \bigg ({T_1}^\beta +\tfrac{{T_2}^\beta }{\beta +1}\bigg )-\tfrac{{T_2}^y x}{y+1}+1\bigg )\bigg )-D_m {h_m} {T_2} \nonumber \\&\quad \times \bigg (2 {T_1} \bigg (-\tfrac{\alpha {T_1}^\beta }{\beta +1}+\tfrac{x {T_1}^y}{y+1}+1\bigg ) \bigg (-x {T_1}^y+\alpha ({T_1}^\beta +\tfrac{{T_2}^\beta }{\beta +1})-\tfrac{{T_2}^y x}{y+1}+1\bigg ) \nonumber \\&\quad +\,{T_2} \bigg (\tfrac{2 \alpha ((\beta +2) x {T_2}^y+\beta (y+1)) {T_2}^\beta }{(\beta +1) (\beta +2) (y+1)}-\tfrac{\alpha ^2 {T_2}^{2 \beta }}{(\beta +1)^2}-\tfrac{x (x (y+2) {T_2}^y+2 y (y+1)) {T_2}^y}{(y+1)^2 (y+2)}+1\bigg )\bigg )\nonumber \\&\quad -\,{C_{m\alpha }} D_m {T_2} x y \bigg (\bigg (-x {T_1}^y+\alpha ({T_1}^\beta +\tfrac{{T_2}^\beta }{\beta +1})-\tfrac{{T_2}^y x}{y+1}+1\bigg ) \nonumber \\&\quad \bigg (\tfrac{x {T_1}^y+2}{y}-\tfrac{2 \alpha {T_1}^\beta }{\beta +y}\bigg ) {T_1}^y+{T_2}^y \bigg (\tfrac{\alpha (3 x y (y+1) {T_2}^y +\beta ^2 (x {T_2}^y+2)+\beta (x (4 y+1) {T_2}^y+4 y+2)) {T_2}^\beta }{y (\beta +y) (\beta +y+1) (\beta +2 y+1)}\nonumber \\&\quad -\,\tfrac{2 \alpha ^2 {T_2}^{2 \beta }}{(\beta +y) (2 \beta +y+1)}-\tfrac{2 x {T_2}^y}{2 y+1}-\tfrac{2 x {T_2}^y}{y^2+y}+\tfrac{2 x {T_2}^y}{2 y^2+3 y+1}-\,\tfrac{x^2 {T_2}^{2 y}}{y^2+y}+\tfrac{2 x^2 {T_2}^{2 y}}{3 y^2+4 y+1} \nonumber \\&\quad +\tfrac{x {T_2}^y+2}{y}-\tfrac{2}{y+1}\bigg )\bigg )+\tfrac{2 {C_m} D_m {T_2} ({T_1}+{T_2}) (\alpha \beta {T_1}^\beta -{T_1}^y x y)}{{T_1}} \biggl ) \end{aligned}$$
(7.1)

and

$$\begin{aligned} {}&\tfrac{\partial TC_2}{\partial T_2} = -\tfrac{1}{{2 ({T_1}+{T_2})^2}} \biggl ( 2 {A_m} + 2 D_m {I_{me}} {S_m} ({M_\mathrm{manu}}-{T_1}-{T_2}) ({T_1}+{T_2})-D_m {I_{m_e}} {S_m} (2 {M_\mathrm{manu}}-{T_1}-{T_2})\nonumber \\&\quad \times ({T_1}+{T_2})-2 {C_m} D_m ({T_1}+{T_2}) (-x {T_1}^y+\alpha ({T_1}^\beta +{T_2}^\beta )-{T_2}^y x+1)\nonumber \\&\quad +\,\tfrac{1}{{\beta +y}} \biggl ({C_{m\alpha }} D_m ({T_1}+{T_2}) x (\beta (-2 (\alpha {T_2}^\beta -x {T_2}^y+1) {T_1}^y + x (-\alpha {T_2}^\beta +x {T_2}^y+1) {T_1}^{2 y}\nonumber \\&\quad +\,x^2 {T_1}^{3 y}-2 \alpha {T_1}^{\beta +y}-\alpha x {T_1}^{\beta +2 y}+{T_2}^y (x {T_2}^y+2) (-\alpha {T_2}^\beta +x {T_2}^y-1))\nonumber \\&\quad +\,(-2 (\alpha {T_2}^\beta -x {T_2}^y+1) {T_1}^y+x (-\alpha {T_2}^\beta +x {T_2}^y+1) {T_1}^{2 y}+x^2 {T_1}^{3 y} + 2 \alpha (\alpha {T_2}^\beta \nonumber \\&\quad -\,{T_2}^y x) {T_1}^{\beta +y} + 2 \alpha ^2 {T_1}^{2 \beta +y}-3 \alpha x {T_1}^{\beta +2 y}+{T_2}^y (2 \alpha ^2 {T_2}^{2 \beta }+x {T_2}^y+x^2 {T_2}^{2 y}\nonumber \\&\quad -\,3 \alpha x {T_2}^{\beta +y}-2)) y) \biggl )+2 {C_m} D_m {T_2} \bigg (-x {T_1}^y+\alpha \bigg ({T_1}^\beta +\tfrac{{T_2}^\beta }{\beta +1}\bigg )-\tfrac{{T_2}^y x}{y+1}+1\bigg )\nonumber \\&\quad +\,D_m {h_m} {T_2} \bigg (2 {T_1} \bigg (-\tfrac{\alpha {T_1}^\beta }{\beta +1}+\tfrac{x {T_1}^y}{y+1}+1\bigg ) (-x {T_1}^y+\alpha ({T_1}^\beta +\tfrac{{T_2}^\beta }{\beta +1}\bigg )\nonumber \\&\quad -\tfrac{{T_2}^y x}{y+1}+1)+{T_2} \bigg (\tfrac{2 \alpha ((\beta +2) x {T_2}^y+\beta (y+1)) {T_2}^\beta }{(\beta +1) (\beta +2) (y+1)} -\tfrac{\alpha ^2 {T_2}^{2 \beta }}{(\beta +1)^2}-\tfrac{x (x (y+2) {T_2}^y+2 y (y+1)) {T_2}^y}{(y+1)^2 (y+2)}+1\bigg )\bigg )\nonumber \\&\quad -\,\tfrac{1}{{(\beta +1) (y+1)}} \bigl (2 D_m {h_m} ({T_1}+{T_2}) (\alpha (-\alpha {T_2}^\beta +x {T_2}^y+\beta ) (y+1) {T_1}^{\beta +1}\nonumber \\&\quad -\,\alpha ^2 (y+1) {T_1}^{2 \beta +1}-(\beta +1) x (-\alpha {T_2}^\beta +x {T_2}^y+y) {T_1}^{y+1}+\alpha x (\beta +y+2) {T_1}^{\beta +y+1}\nonumber \\&\quad -(\beta +1) x^2 {T_1}^{2 y+1}+(\beta +1) (\alpha {T_2}^\beta -x {T_2}^y+1) (y+1) {T_1}+{T_2} (\alpha {T_2}^\beta -x {T_2}^y+1)\nonumber \\&\quad (-\alpha (y+1) {T_2}^\beta +x {T_2}^y+y+\, \beta (x {T_2}^y+y+1)+1)) \bigl ) +{C_{m\alpha }} D_m {T_2} x y \nonumber \\&\quad \times \bigg (\bigg (-x {T_1}^y+\alpha ({T_1}^\beta +\tfrac{{T_2}^\beta }{\beta +1})-\tfrac{{T_2}^y x}{y+1}+1\bigg )\bigg (\tfrac{x {T_1}^y+2}{y}-\tfrac{2 \alpha {T_1}^\beta }{\beta +y}\bigg ) {T_1}^y\nonumber \\&\quad +{T_2}^y \bigg (\tfrac{\alpha (3 x y (y+1) {T_2}^y+\beta ^2 (x {T_2}^y+2)+\beta (x (4 y+1) {T_2}^y+4 y+2)) {T_2}^\beta }{y (\beta +y) (\beta +y+1) (\beta +2 y+1)}-\,\tfrac{2 \alpha ^2 {T_2}^{2 \beta }}{(\beta +y) (2 \beta +y+1)}-\tfrac{2 x {T_2}^y}{2 y+1}-\tfrac{2 x {T_2}^y}{y^2+y}\nonumber \\&\quad +\tfrac{2 x {T_2}^y}{2 y^2+3 y+1} -\tfrac{x^2 {T_2}^{2 y}}{y^2+y}+\tfrac{2 x^2 {T_2}^{2 y}}{3 y^2+4 y+1}+\tfrac{x {T_2}^y+2}{y}-\tfrac{2}{y+1}\bigg )\bigg ) \biggl ). \end{aligned}$$
(7.2)

Next, take the Hessian matrix with the help of above Eqs. (7.1) and (7.2) given below

$$\begin{aligned} H_m(T_1, T_2) = \tfrac{\partial ^2 TC_2}{\partial T_1^2} \tfrac{\partial ^2 TC_2}{\partial T_2^2} - \bigg (\tfrac{\partial ^2 TC_2}{\partial T_1 \partial T_2}\bigg )^2 > 0. \end{aligned}$$

Since the value of Hessian matrix is highly nonlinear, it is not possible to show the direct existence of the equation. The Hessian matrix exists, only if \(y, \beta > 0\); \((\beta + y) > 0\); \((2 \beta + y) > 1\); \({M_\mathrm{manu}} \geqslant 0, T_2 \geqslant 0\); \(\tfrac{{M_\mathrm{manu}}}{(T_2 - {M_\mathrm{manu}})} \geqslant 0\); \({M_\mathrm{manu}} \ne 0 \); and \( {M_\mathrm{manu}}^2 \ne {M_\mathrm{manu}} T_2\).

1.2 Optimal Solution for Retailer

Case 1. When \(M_\mathrm{retail} \leqslant T_3\):

First, take the first-order partial differential equation of Eq. (3.31) with respect to \(T_3\) and \(T_4\) and equate to be zero, written as

$$\begin{aligned}&\tfrac{\partial TC_3}{\partial T_3} = \tfrac{D_r {I_{r_{p}}}}{2 ({y_1}+1)^2 ({y_1}+2) T_4} \biggl ( {T_3}^2 (2 {x_1} {y_1}^2 ({y_1}+1) {T_3}^{{y_1}-1}-2 {x_1}^2 {y_1} ({y_1}+2) {T_3}^{2 {y_1}-1})\nonumber \\&\quad +\,2 {x_1}^2 {y_1} ({y_1}+2) {M_\mathrm{retail}}^{{y_1}+1} {T_3}^{y_1} +2 {T_3} (-{x_1}^2 ({y_1}+2) {T_3}^{2 {y_1}}\nonumber \\&\quad +2 {x_1} {y_1} ({y_1}+1) {T_3}^{y_1}+({y_1}+1)^2 ({y_1}+2))+2 {x_1} ({y_1}+2) {M_\mathrm{retail}}^{{y_1}+1}\nonumber \\&\quad \times ({x_1} {T_3}^{y_1}+{y_1}+1)-2 {x_1} {y_1} ({y_1}+1) ({y_1}+2) {M_\mathrm{retail}} {T_3}^{y_1}-2 ({y_1}+1) ({y_1}+2)\nonumber \\&\quad \times {M_\mathrm{retail}} ({x_1} {T_3}^{y_1}+{y_1}+1) \biggl ) +\tfrac{{C_r} \left( D_r ({x_1} {T_3}^{y_1}+1)-\tfrac{D_r}{\delta (T_4-{T_3})+1}-D_r\right) }{T_4} \nonumber \\&\quad +\,\tfrac{D_r {h_r} {T_3}^2 \left( \tfrac{x_1 {y_1} {T_3}^{{y_1}-1} (2 {y_1} ({y_1}+1)-{x_1} ({y_1}+2) {T_3}^{y_1})}{({y_1}+1)^2 ({y_1}+2)}-\tfrac{{x_1}^2 {y_1} {T_3}^{2 {y_1}-1}}{({y_1}+1)^2}\right) }{2 T_4} \nonumber \\&\quad +\, \tfrac{D_r {h_r} {T_3} \left( \tfrac{{x_1} {T_3}^{y_1} (2 {y_1} ({y_1}+1)-{x_1} ({y_1}+2) {T_3}^{y_1})}{({y_1}+1)^2 ({y_1}+2)}+1\right) }{T_4} -\tfrac{{o_r} \left( 1-\tfrac{1}{\delta (T_4-{T_3})+1}\right) }{T_4} \nonumber \\&\quad -\, \tfrac{\delta {O_r} (T_4-{T_3})}{T_4 (\delta (T_4-{T_3})+1)^2}+\tfrac{{s_r} (\tfrac{\delta }{\delta (T_4-{T_3})+1}-\delta )}{\delta ^2 T_4}, \end{aligned}$$
(7.3)
$$\begin{aligned}&\tfrac{\partial TC_3}{\partial T_4} = -\tfrac{D_r {I_{r_{p}}}}{2 ({y_1}+1)^2 ({y_1}+2) T_4^2} (-{x_1}^2 ({y_1}+2) {M_\mathrm{retail}}^{2 {y_1}+2}+{T_3}^2 (-{x_1}^2 ({y_1}+2) {T_3}^{2 {y_1}} +2 {x_1} {y_1} ({y_1}+1) {T_3}^{y_1} \nonumber \\&\quad +\,({y_1}+1)^2 ({y_1}+2))+2 {x_1} ({y_1}+2) {T_3} {M_\mathrm{retail}}^{{y_1}+1} ({x_1} {T_3}^{y_1}+{y_1}+1)-2 {x_1} {y_1} ({y_1}+1) {M_\mathrm{retail}}^{{y_1}+2} \nonumber \\&\quad -\,2 ({y_1}+1) ({y_1}+2) {M_\mathrm{retail}} {T_3} ({x_1} {T_3}^{y_1}+{y_1}+1)+({y_1}+1)^2 ({y_1}+2) {M_\mathrm{retail}}^2) \nonumber \\&\quad -\,\tfrac{{C_r} (D_r (\tfrac{{x_1} {T_3}^{{y_1}+1}}{{y_1}+1} +{T_3})+\tfrac{D_r \log (\delta (T_4-{T_3})+1)}{\delta } - D_r{T_3})}{T_4^2} -\tfrac{D_r {h_r} {T_3}^2 (\tfrac{{x_1} {T_3}^{y_1} (2 {y_1} ({y_1}+1)-{x_1} ({y_1}+2) {T_3}^{y_1})}{({y_1}+1)^2 ({y_1}+2)}+1)}{2 T_4^2} \nonumber \\&\quad +\tfrac{{C_r} D_r}{T_4 (\delta (T_4-{T_3})+1)}+\tfrac{D_r {I_{r_{e}}} {M_\textit{retail}}^2 {S_p}}{2 T_4^2} -\tfrac{{O_r} (T_4-{T_3}) (1-\tfrac{1}{\delta (T_4-{T_3})+1})}{T_4^2}+\tfrac{{o_r} (1-\tfrac{1}{\delta (T_4-{T_3})+1})}{T_4} \nonumber \\&\quad +\,\tfrac{\delta {o_r} (T_4-{T_3})}{T_4 (\delta (T_4-{T_3})+1)^2}-\tfrac{{s_r} (\delta (T_4-{T_3})-\log (\delta (T_4-{T_3})+1))}{\delta ^2 T_4^2} +\tfrac{{s_r} (\delta -\tfrac{\delta }{\delta (T_4-{T_3})+1})}{\delta ^2 T_4}. \end{aligned}$$
(7.4)

For sufficient condition, we partially differentiate (4.1) with respect to \(T_3\) and \(T_4\) and check that the below Hessian condition exists

$$\begin{aligned} H_r(T_3, T_4) = \tfrac{\partial ^2 TC_3}{\partial T_3^2} \tfrac{\partial ^2 TC_3}{\partial T_4^2} - \left( \tfrac{\partial ^2 TC_3}{\partial T_3 \partial T_4}\right) ^2 > 0. \end{aligned}$$

For this, we take the second-order partial differential equation of \(TC_3(T_3, T_4)\) and can be written as:

$$\begin{aligned} \tfrac{\partial ^2 TC_3}{\partial T_3^2}= & {} \tfrac{1}{{T_4}} \biggl ( D_r \bigg (\tfrac{{h_r} (-{x_1}^2 {T_3}^{2 {y_1}}-2 {x_1}^2 {y_1} {T_3}^{2 {y_1}}+{x_1} {y_1}^2 {T_3}^{y_1}+{x_1} {y_1} {T_3}^{y_1}+{y_1}+1)}{{y_1}+1} \nonumber \\&+\,\tfrac{{I_{r_{p}}} (-{x_1}^2 (2 {y_1}+1) {T_3}^{2 {y_1}+1} + {x_1} {y_1} {M_\text {retail}} {T_3}^{y_1} ({x_1} {M_\text {retail}}^{y_1}-{y_1}-1)+{x_1} {y_1} ({y_1}+1) {T_3}^{{y_1}+1}+({y_1}+1) {T_3})}{({y_1}+1) {T_3}}\nonumber \\&+\, {x_1} {y_1} {C_r} {T_3}^{{y_1}-1} - \tfrac{{C_r} \delta }{(\delta T_4-\delta {T_3}+1)^2}\bigg )+\tfrac{2 \delta {o_r}+\delta {s_r} T_4 - \delta {s_r} {T_3} + {s_r}}{(\delta T_4-\delta {T_3}+1)^3} \biggl ), \end{aligned}$$
(7.5)
$$\begin{aligned} \tfrac{\partial ^2 TC_3}{\partial T_4^2}= & {} \tfrac{1}{T_4^3} \biggl ( \tfrac{D_r {I_{r_{p}}}}{({y_1}+1)^2 ({y_1}+2)} \biggl (-{x_1}^2 ({y_1}+2) {M_\text {retail}}^{2 {y_1}+2} +{T_3}^2 (-{x_1}^2 ({y_1}+2) {T_3}^{2 {y_1}}\nonumber \\&+\,2 {x_1} {y_1} ({y_1}+1) {T_3}^{y_1} +({y_1}+1)^2 ({y_1}+2))+2 {x_1} ({y_1}+2) {T_3} {M_\text {retail}}^{{y_1}+1} ( {x_1} {T_3}^{y_1}+{y_1}+1)\nonumber \\&-\,2 {x_1} {y_1} ({y_1}+1) {M_\text {retail}}^{{y_1}+2} -2 ({y_1}+1) ({y_1}+2) {M_\text {retail}} {T_3} ({x_1} {T_3}^{y_1}+{y_1}+1)\nonumber \\&+\,({y_1}+1)^2 ({y_1}+2) {M_\text {retail}}^2 \bigg ) + \tfrac{2 {C_r} D_r ({x_1} \delta {T_3}^{{y_1}+1}+({y_1}+1) \log (\delta T_4-\delta {T_3}+1))}{({y_1}+1) \delta } \nonumber \\&+\, D_r {h_r} {T_3}^2 \bigg (\tfrac{{x_1} {T_3}^{y_1} (2 {y_1} ({y_1}+1)-{x_1} ({y_1}+2) {T_3}^{y_1})}{({y_1}+1)^2 ({y_1}+2)}+1\bigg )\nonumber \\&-\tfrac{{C_r} D_r \delta T_4^2}{(\delta T_4-\delta {T_3}+1)^2}-\tfrac{2 {C_r} D_r T_4}{\delta T_4-\delta {T_3}+1}- D_r {I_{r_{e}}} {M_\text {retail}}^2 {S_p}\nonumber \\&-\,\tfrac{2 \delta ^2 {o_r} T_4^2 (T_4-{T_3})}{(\delta T_4-\delta {T_3}+1)^3}+\tfrac{2 \delta {o_r} T_4^2}{(\delta T_4-\delta {T_3}+1)^2} - 2 {o_r} T_4 \bigg (\tfrac{1}{\delta (-T_4)+\delta {T_3}-1}+1\bigg ) \nonumber \\&+\, \tfrac{2 \delta {o_r} (T_4-{T_3})^2}{\delta T_4-\delta {T_3}+1}-\tfrac{2 \delta {o_r} T_4 (T_4-{T_3})}{(\delta T_4-\delta {T_3}+1)^2} + \tfrac{{s_r} T_4^2}{(\delta T_4-\delta {T_3}+1)^2} + \tfrac{2 {s_r} (\delta (T_4-{T_3})-\log (\delta T_4-\delta {T_3}+1))}{\delta ^2} \nonumber \\&-\,\tfrac{2 {s_r} T_4 (T_4-{T_3})}{\delta T_4-\delta {T_3}+1} \biggl ), \end{aligned}$$
(7.6)
$$\begin{aligned} \tfrac{\partial ^2 TC_3}{\partial T_3 \partial T_4}= & {} \tfrac{1}{T_4^2} \biggl (-\tfrac{{x_1} {y_1} D_r {h_r} {T_3}^{{y_1}+1} (-2 {x_1} {T_3}^{y_1}-{x_1} {y_1} {T_3}^{y_1}+{y_1}^2+{y_1})}{({y_1}+1)^2 ({y_1}+2)} +{C_r} D_r (\tfrac{1}{\delta T_4-\delta {T_3}+1}-{x_1} {T_3}^{y_1}) \nonumber \\&-\, D_r {h_r} {T_3} \bigg (\tfrac{{x_1} {T_3}^{y_1} (2 {y_1} ({y_1}+1)-{x_1} ({y_1}+2) {T_3}^{y_1})}{({y_1}+1)^2 ({y_1}+2)}+1\bigg ) + \tfrac{{C_r} D_r \delta T_4}{(\delta T_4-\delta {T_3}+1)^2} + \tfrac{2 \delta ^2 {o_r} T_4 (T_4-{T_3})}{(\delta T_4-\delta {T_3}+1)^3} \nonumber \\&+\, \tfrac{D_r {I_{r_{p}}} ({x_1} {T_3}^{y_1}+1) (-{x_1} {M_\text {retail}}^{{y_1}+1}-{T_3} (-{x_1} {T_3}^{y_1}+{y_1}+1)+({y_1}+1) {M_\text {retail}})}{{y_1}+1} \nonumber \\&+\, {o_r} \bigg (\tfrac{1}{\delta (-T_4)+\delta {T_3}-1}+1\bigg ) - \tfrac{2 \delta {o_r} T_4}{(\delta T_4-\delta {T_3}+1)^2} \nonumber \\&+\, \tfrac{\delta {o_r} (T_4-{T_3})}{(\delta T_4-\delta {T_3}+1)^2} +\tfrac{{s_r} (T_4-{T_3})}{\delta T_4-\delta {T_3}+1}-\tfrac{{s_r} T_4}{(\delta T_4-\delta {T_3}+1)^2} \biggl ). \end{aligned}$$
(7.7)

Since the value of Hessian matrix is highly nonlinear, it is not possible to prove the direct existence of the equation. The Hessian matrix exists only if \(M_\mathrm{retail} \geqslant 0 \), \(T_3 \geqslant 0 \), \(\tfrac{M_\mathrm{retail}}{T_3 - M_\mathrm{retail}} \geqslant 0 \), \({M_\mathrm{retail}}^2 \ne M_\mathrm{retail} \ \ T_3 \), Re\((y_1) > -1\), and \(\tfrac{M_\mathrm{retail}}{(M_\mathrm{retail} - T_3)} > 1\).

Case (2) \(T_3 \leqslant M_\text {retail}\):

Similarly, take the first-order partial differential equation of Eq. (3.32) with respect to \(T_3\) and \(T_4\) and equate to be zero, written as

$$\begin{aligned} \tfrac{\partial TC_4}{\partial T_3}= & {} \tfrac{1}{{({T_3}+{T_4})^3}} \biggl ( \tfrac{2 x_1 y_1 D_r {h_r} {T_3}^{y_1+1} ({T_3}+{T_4}) (-2 x_1 {T_3}^{y_1}-x_1 y_1 {T_3}^{y_1}+y_1^2+y_1)}{(y_1+1)^2 (y_1+2)} \nonumber \\&-\, \tfrac{2 {C_r} D_r (x_1 \delta {T_3}^{y_1+1}+(y_1+1) \log (\delta (-{T_3})+\delta {T_4}+1))}{(y_1+1) \delta } + 2 {C_r} D_r ({T_3}+{T_4}) (x_1 {T_3}^{y_1} \nonumber \\&+\, \tfrac{1}{\delta {T_3}-\delta {T_4}-1}\bigg ) + 2 D_r {h_r} {T_3} ({T_3}+{T_4}) \left( \tfrac{x_1 {T_3}^{y_1} (2 y_1 (y_1+1)-x_1 (y_1+2) {T_3}^{y_1})}{(y_1+1)^2 (y_1+2)}+1\right) \nonumber \\&-\, D_r {h_r} {T_3}^2 \bigg (\tfrac{x_1 {T_3}^{y_1} (2 y_1 (y_1+1)-x_1 (y_1+2) {T_3}^{y_1})}{(y_1+1)^2 (y_1+2)} + 1\bigg ) - 2 {A_r} \nonumber \\&+\, D_r {I_{r_{e}}} {S_p} ({M_\text {retail}}^2+2 {M_\text {retail}} {T_3}-2 {T_3}^2)-2 D_r {I_{r_{e}}} {S_p}\nonumber \\&\times ({M_\text {retail}}-2 {T_3}) ({T_3}+{T_4}) - 2 {o_r} ({T_3}+{T_4})\nonumber \\&\times \bigg (\tfrac{1}{\delta {T_3}-\delta {T_4}-1}+1\bigg )+\tfrac{2 \delta {o_r} ({T_3}-{T_4}) ({T_3}+{T_4})}{(\delta (-{T_3})+\delta {T_4}+1)^2} + \tfrac{2 \delta {o_r} ({T_3}-{T_4})^2}{\delta {T_3}-\delta {T_4}-1} \nonumber \\&+\, \tfrac{2 {s_r} (\delta ({T_3}-{T_4})+\log (\delta (-{T_3})+\delta {T_4}+1))}{\delta ^2} -\tfrac{2 {s_r} ({T_3}-{T_4}) ({T_3}+{T_4})}{\delta {T_3}-\delta {T_4}-1} \biggl ). \end{aligned}$$
(7.8)
$$\begin{aligned} \tfrac{\partial TC_4}{\partial T_4}= & {} \tfrac{1}{{({T_3}+{T_4})^3}} \biggl (-\tfrac{2 {C_r} D_r (x_1 \delta {T_3}^{y_1+1}+(y_1+1) \log (\delta (-{T_3})+\delta {T_4}+1))}{(y_1+1) \delta } \nonumber \\&-\,D_r {h_r} {T_3}^2 \bigg (\tfrac{x_1 {T_3}^{y_1} (2 y_1 (y_1+1)-x_1 (y_1+2) {T_3}^{y_1})}{(y_1+1)^2 (y_1+2)}+1\bigg )-2 {A_r}+\tfrac{2 {C_r} D_r ({T_3}+{T_4})}{\delta (-{T_3})+\delta {T_4}+1} \nonumber \\&+\, D_r {I_{r_{e}}} {S_p} ({M_\text {retail}}^2+2 {M_\text {retail}} {T_3}-2 {T_3}^2)+2 {o_r} ({T_3}+{T_4}) \left( \tfrac{1}{\delta {T_3}-\delta {T_4}-1}+1\right) \nonumber \\&+\, \tfrac{2 \delta {o_r} ({T_4}-{T_3}) ({T_3}+{T_4})}{(\delta (-{T_3})+\delta {T_4}+1)^2} + \tfrac{2 \delta {o_r} ({T_3}-{T_4})^2}{\delta {T_3}-\delta {T_4}-1} + \tfrac{2 {s_r} (\delta ({T_3}-{T_4})+\log (\delta (-{T_3})+\delta {T_4}+1))}{\delta ^2} \nonumber \\&+\,\tfrac{2 {s_r} ({T_3}-{T_4}) ({T_3}+{T_4})}{\delta {T_3}-\delta {T_4}-1}\biggl ). \end{aligned}$$
(7.9)

For sufficient condition, we partially differentiate (3.32) with respect to \(T_3\) and \(T_4\) and check that the below Hessian condition exists:

$$\begin{aligned} H_{r_2}(T_3, T_4) = \tfrac{\partial ^2 TC_4}{\partial T_3^2} \tfrac{\partial ^2 TC_4}{\partial T_4^2} - \bigg (\tfrac{\partial ^2 TC_4}{\partial T_3 \partial T_4}\bigg )^2 > 0. \end{aligned}$$

For this, we take the second-order partial differential equation of Eq. (3.32), which is given below

$$\begin{aligned} \tfrac{\partial ^2 TC_4}{\partial T_3^2}= & {} \tfrac{1}{{({T_3}+{T_4})^3}} \biggl (-\tfrac{x_1 y_1 D_r {h_r} {T_3}^{y_1 + 1} ({T_3}+{T_4}) (-2 x_1 {T_3}^{y_1}-x_1 y_1 {T_3}^{y_1}+y_1^2+y_1)}{(y_1+1)^2 (y_1+2)} \nonumber \\&+\, \tfrac{2 {C_r} D_r (x_1 \delta {T_3}^{y_1+1}+(y_1+1) \log (\delta (-{T_3})+\delta {T_4}+1))}{(y_1+1) \delta } - {C_r} D_r ({T_3}+{T_4}) ( x_1 {T_3}^{y_1} \nonumber \\&+\,\tfrac{1}{\delta {T_3}-\delta {T_4}-1}\bigg ) - D_r {h_r} {T_3} ({T_3}+{T_4}) \left( \tfrac{x_1 {T_3}^{y_1} (2 y_1 (y_1+1)-x_1 (y_1+2) {T_3}^{y_1})}{(y_1+1)^2 (y_1+2)}+1\right) \nonumber \\&+\, D_r {h_r} {T_3}^2 \left( \tfrac{x_1 {T_3}^{y_1} (2 y_1 (y_1+1)-x_1 (y_1+2) {T_3}^{y_1})}{(y_1+1)^2 (y_1+2)}+1\right) + 2 {A_r} \nonumber \\&+\, \tfrac{{C_r} D_r \delta ({T_3}+{T_4})^2}{(\delta (-{T_3})+\delta {T_4}+1)^2} + \tfrac{{C_r} D_r ({T_3}+{T_4})}{\delta {T_3}-\delta {T_4}-1} -\, D_r {I_{r_{e}}} {S_p} ({M_\text {retail}}^2+2 {M_\text {retail}} {T_3}-2 {T_3}^2) \nonumber \\&+ D_r {I_{r_{e}}} {S_p} ({M_\mathrm{retail}} - 2 {T_3}) ({T_3}+{T_4}) +\, \tfrac{2 \delta ^2 {o_r} ({T_4}-{T_3}) ({T_3}+{T_4})^2}{(\delta (-{T_3})+\delta {T_4}+1)^3}\nonumber \\&-\tfrac{2 \delta {o_r} ({T_3}+{T_4})^2}{(\delta (-{T_3})+\delta {T_4}+1)^2} -\, \tfrac{2 \delta {o_r} ({T_3}-{T_4})^2}{\delta {T_3}-\delta {T_4}-1}\nonumber \\&-\tfrac{2 {s_r} (\delta ({T_3}-{T_4})+\log (\delta (-{T_3})+\delta {T_4}+1))}{\delta ^2} -\tfrac{{s_r} ({T_3}+{T_4})^2}{(\delta (-{T_3})+\delta {T_4}+1)^2} \biggl ). \end{aligned}$$
(7.10)
$$\begin{aligned} \tfrac{\partial ^2 TC_4}{\partial T_4^2}= & {} \tfrac{1}{{({T_3}+{T_4})^3}} \biggl (\tfrac{2 {C_r} D_r (x_1 \delta {T_3}^{y_1+1}+(y_1+1) \log (\delta (-{T_3})+\delta {T_4}+1))}{(y_1+1) \delta } \nonumber \\&+\, D_r {h_r} {T_3}^2 \bigg (\tfrac{x_1 {T_3}^{y_1} (2 y_1 (y_1+1)-x_1 (y_1+2) {T_3}^{y_1})}{(y_1+1)^2 (y_1+2)}+1\bigg ) + 2 {A_r} \nonumber \\&-\,\tfrac{{C_r} D_r \delta ({T_3}+{T_4})^2}{(\delta (-{T_3})+\delta {T_4}+1)^2}+\tfrac{2 {C_r} D_r ({T_3}+{T_4})}{\delta {T_3}-\delta {T_4}-1} \nonumber \\&-\, D_r {I_{r_{e}}} {S_p} ({M_\text {retail}}^2+2 {M_\text {retail}} {T_3}-2 {T_3}^2)-\tfrac{2 \delta ^2 {o_r} ({T_4}-{T_3}) ({T_3}+{T_4})^2}{(\delta (-{T_3})+\delta {T_4}+1)^3} \nonumber \\&-\, 2 {o_r} ({T_3}+{T_4}) \bigg (\tfrac{1}{\delta {T_3}-\delta {T_4}-1} + 1\bigg ) + \tfrac{2 \delta {o_r} ({T_3}+{T_4})^2}{(\delta (-{T_3})+\delta {T_4}+1)^2} \nonumber \\&+\, \tfrac{2 \delta {o_r} ({T_3}-{T_4}) ({T_3}+{T_4})}{(\delta (-{T_3})+\delta {T_4}+1)^2}-\tfrac{2 \delta {o_r} ({T_3}-{T_4})^2}{\delta {T_3}-\delta {T_4}-1} - \tfrac{2 {s_r} (\delta ({T_3}-{T_4})+\log (\delta (-{T_3})+\delta {T_4}+1))}{\delta ^2}\nonumber \\&+\tfrac{{s_r} ({T_3}+{T_4})^2}{(\delta (-{T_3})+\delta {T_4}+1)^2} - \tfrac{2 {s_r} ({T_3}-{T_4}) ({T_3}+{T_4})}{\delta {T_3}-\delta {T_4}-1} \biggl ). \end{aligned}$$
(7.11)
$$\begin{aligned} \tfrac{\partial ^2 TC_4}{\partial T_4^2}= & {} \tfrac{1}{{({T_3}+{T_4})^3}} \biggl (\tfrac{4 x_1 y_1 D_r {h_r} {T_3}^{y_1} ({T_3}+{T_4})^2 (-2 x_1 {T_3}^{y_1}-x_1 y_1 {T_3}^{y_1}+y_1^2+y_1)}{(y_1+1)^2 (y_1+2)} \nonumber \\&-\, \tfrac{2 x_1 y_1 D_r {h_r} {T_3}^{y_1+1} ({T_3}+{T_4}) (-2 x_1 {T_3}^{y_1}-x_1 y_1 {T_3}^{y_1}+y_1^2+y_1)}{(y_1+1)^2 (y_1+2)}\nonumber \\&-\, \tfrac{x_1 y_1 D_r {h_r} {T_3}^{y_1} ({T_3}+{T_4})^2 (2 x_1 y_1^2 {T_3}^{y_1}-2 x_1 {T_3}^{y_1}+3 x_1 y_1 {T_3}^{y_1}-y_1^3+y_1)}{(y_1+1)^2 (y_1+2)} \nonumber \\&+\,{C_r} ({T_3}+{T_4})^2 \left( x_1 y_1 D_r {T_3}^{y_1-1}-\tfrac{D_r \delta }{(\delta (-{T_3})+\delta {T_4}+1)^2}\right) \nonumber \\&+\, \tfrac{2 {C_r} D_r (x_1 \delta {T_3}^{y_1+1}+(y_1+1) \log (\delta (-{T_3})+\delta {T_4}+1))}{(y_1+1) \delta } \nonumber \\&-\, 2 {C_r} D_r ({T_3}+{T_4}) \left( x_1 {T_3}^{y_1} + \tfrac{1}{\delta {T_3}-\delta {T_4}-1}\right) - 2 D_r {h_r} {T_3} ({T_3}+{T_4}) \nonumber \\&\times \left( \tfrac{x_1 {T_3}^{y_1} (2 y_1 (y_1+1)-x_1 (y_1+2) {T_3}^{y_1})}{(y_1+1)^2 (y_1+2)}+1\right) + D_r {h_r} ({T_3}+{T_4})^2 \nonumber \\&\times \left( \tfrac{x_1 {T_3}^{y_1} (2 y_1 (y_1+1)-x_1 (y_1+2) {T_3}^{y_1})}{(y_1+1)^2 (y_1+2)}+1\right) \nonumber \\&+\, D_r {h_r} {T_3}^2 \bigg (\tfrac{x_1 {T_3}^{y_1} (2 y_1 (y_1+1)-x_1 (y_1+2) {T_3}^{y_1})}{(y_1+1)^2 (y_1+2)}+1\bigg ) \nonumber \\&+\, 2 {x_1r} - D_r {I_{r_{e}}} {S_p} ({M_\text {retail}}^2+2 {M_\text {retail}} {T_3}-2 {T_3}^2)+2 D_r {I_{r_{e}}} {S_p} \nonumber \\&\times ({M_\text {retail}}-2 {T_3}) ({T_3}+{T_4})+2 D_r {I_{re}} {S_p} ({T_3}+{T_4})^2-\tfrac{2 \delta ^2 {o_r} ({T_4}-{T_3}) ({T_3}+{T_4})^2}{(\delta (-{T_3})+\delta {T_4}+1)^3} \nonumber \\&+\, 2 {o_r} ({T_3}+{T_4}) (\tfrac{1}{\delta {T_3}-\delta {T_4}-1}+1) + \tfrac{2 \delta {o_r} ({T_3}+{T_4})^2}{(\delta (-{T_3})+\delta {T_4}+1)^2} \nonumber \\&+\, \tfrac{2 \delta {o_r} ({T_4}-{T_3}) ({T_3}+{T_4})}{(\delta (-{T_3})+\delta {T_4}+1)^2} - \tfrac{2 \delta {o_r} ({T_3}-{T_4})^2}{\delta {T_3}-\delta {T_4}-1} - \tfrac{2 {s_r} (\delta ({T_3}-{T_4})+\log (\delta (-{T_3})+\delta {T_4}+1))}{\delta ^2}\nonumber \\&+ \tfrac{{s_r} ({T_3}+{T_4})^2}{(\delta (-{T_3})+\delta {T_4}+1)^2} + \tfrac{2 {s_r} ({T_3}-{T_4}) ({T_3}+{T_4})}{\delta {T_3}-\delta {T_4}-1} \biggl ). \end{aligned}$$
(7.12)

Similarly, the Hessian matrix \((H_{r_2}(T_3, T_4))\) is highly nonlinear, and thus it is not possible to prove the direct existence of the equation. The Hessian matrix exists only if \(M_\text {retail} \geqslant 0 \), \(T_3 \geqslant 0 \), \(\tfrac{M_\text {retail}}{T_3 - M_\text {retail}} \geqslant 0 \), \({M_\text {retail}}^2 \ne M_\text {retail} \ \ T_3 \), Re\((y_1) > - 1\), and \(\tfrac{M_\text {retail}}{(M_\text {retail} - T_3)} > 1\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vandana Rai Trade Credit Policy Between Supplier–Manufacturer–Retailer for Ameliorating/Deteriorating Items. J. Oper. Res. Soc. China 8, 79–103 (2020). https://doi.org/10.1007/s40305-018-0203-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40305-018-0203-9

Keywords

Mathematics Subject Classification

Navigation