Skip to main content
Log in

A Two-Echelon Inventory Model for Ameliorating/Deteriorating Items with Single Vendor and Multi-buyers

  • Research Article
  • Published:
Proceedings of the National Academy of Sciences, India Section A: Physical Sciences Aims and scope Submit manuscript

Abstract

This research work introduces an inventory model for ameliorating items as livestock (say fishes, chickens, ducklings), where the demand rate and deterioration rate are assumed as constant. Delivery times for buyers are introduced in the proposed model. The accumulated inventory contains amelioration rate of livestock with deterioration rate due to death of ameliorating items. The proposed model reduces the integrated total cost of inventory. In addition, the demand and deterioration rates are constant, and the amelioration rate is assumed to adhere to the Weibull distribution. The inventory model is discussed for single manufacturer, who produces the ameliorating items and sells the finished goods to the multiple buyers. The connections between framework parameters and solution procedure illustrate the optimal solutions. Numerical examples are provided to illustrate the theoretical results. Finally, the sensitivity analysis of the framework parameters is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Fredendall LD, Hill ED (2001) Basics of supply chain management. CRC Press LLC, Boca Raton

    Google Scholar 

  2. Crdenas-Barrn LE, Sarkar B, Trevio-Garza G (2013) Easy and improved algorithms to joint determination of the replenishment lot size and number of shipments for an EPQ model with rework. Math Comput Appl 18(2):132–138

    Google Scholar 

  3. Chung KJ, Crdenas-Barrn LE (2013) The simplified solution procedure for deteriorating items under stock-dependent demand and two-level trade credit in the supply chain management. Appl Math Model 37(7):4653–4660

    MathSciNet  MATH  Google Scholar 

  4. Panda S, Saha S, Basu M (2007) An EOQ model with generalized ramp-type demand and Weibull distribution deterioration. Asia-Pac J Oper Res 24(1):93–109

    MathSciNet  MATH  Google Scholar 

  5. Panda S, Senapati S, Basu M (2008) Optimal replenishment policy for perishable seasonal products in a season with ramp-type time dependent demand. Comput Ind Eng 54(2):301–314

    Google Scholar 

  6. Sarkar B, Saren S, Crdenas-Barrn LE (2015) An inventory model with trade-credit policy and variable deterioration for fixed lifetime products. Ann Oper Res 229(1):677–702

    MathSciNet  MATH  Google Scholar 

  7. Taleizadeh AA, Noori-daryan M, Crdenas-Barrn LE (2015) Joint optimization of price, replenishment frequency, replenishment cycle and production rate in vendor managed inventory system with deteriorating items. Int J Prod Econ 159:285–295

    Google Scholar 

  8. Vandana, Sharma BK (2016) Inventory model for non-instantaneous deteriorating items over quadratic demand rate with trade credit. J Appl Anal Comput 6(3):720–737

    MathSciNet  MATH  Google Scholar 

  9. Vandana, Sharma BK (2016) An EOQ model for retailers partial permissible delay in payment linked to order quantity with shortages. Math Comput Simul 125:99–112

    MathSciNet  Google Scholar 

  10. Goyal SK (1976) An integrated inventory model for a single supplier single customer system. Int J Prod Res 14:107–l11

    Google Scholar 

  11. Banerjee A (1986) On a quantity discount pricing model to increase vendor profit. Manag Sci 32:1513–1517

    Google Scholar 

  12. Banerjee A (1986) A joint economic lot-size model for purchaser and vendor. Decis Sci 17:292–311

    Google Scholar 

  13. Goyal SK (1988) A joint economic lot size model for purchaser and vendor: a comment. Decis Sci 19:236–241

    Google Scholar 

  14. Goyal SK, Gupta YP (1989) Integrated inventory models: the buyer vendor coordination. Eur J Oper Res 41:261–269

    Google Scholar 

  15. Kim KH, Hwang H (1988) An incremental discount pricing schedule with multi customers and single price break. Eur J Oper Res 35:71–79

    Google Scholar 

  16. Joglekar PN, Tharthare S (1990) The individually responsible and rational decision approach to economic lot sizes for one vendor and many purchasers. Decis Sci 21:492–506

    Google Scholar 

  17. Banerjee A, Burton JS (1994) Coordinated vs. independent inventory replenishment policies for a vendor and multi buyers. Int J Prod Econ 35:215222

    Google Scholar 

  18. Yang PC, Wee HM (2000) Economic ordering policy of deteriorated item for vendor and buyer: an integrated approach. Prod Plan Control 11:474–480

    Google Scholar 

  19. Yang PC, Wee HM (2002) A single vendor and multi buyers’ production–inventory policy for a deteriorating item. Eur J Oper Res 143:570–581

    MATH  Google Scholar 

  20. Ben-Daya M, Hassini E, Hariga M, AlDurgama MM (2013) Consignment and vendor managed inventory in single-vendor multi buyers’ supply chains. Int J Prod Res 51(5):1347–1365

    Google Scholar 

  21. Hariga M, Hassini E, Ben-Daya M (2014) A note on generalized single-vendor multi-buyer integrated inventory supply chain models with better synchronization. Int J Prod Econ 154:313316

    Google Scholar 

  22. Hill RM (1997) The single vendor single-buyer integrated production inventory model with a generalized policy. Eur J Oper Res 97(493):499

    MATH  Google Scholar 

  23. Hill RM (1999) The optimal production and shipment policy for the single vendor single-buyer integrated production–inventory model. Int J Prod Res 37:2463–2475

    ADS  MATH  Google Scholar 

  24. Hwang HS (2004) A stochastic set-covering location model for both ameliorating and deteriorating items. Comput Ind Eng 46:313–319

    Google Scholar 

  25. Taleizadeh AA, Niaki STA, Makui A (2012) Multiproduct multi-buyer single-vendor supply chain problem with stochastic demand, variable lead-time, and multi-chance constraint. Expert Syst Appl 39(5):5338–5348

    Google Scholar 

  26. Wee HM, Jong JF, Jiang JC (2007) A note on a single-vendor and multi-buyers’ production–inventory policy for a deteriorating item. Eur J Oper Res 180:1130–1134

    MATH  Google Scholar 

  27. Yao MJ, Chiou CC (2004) On a replenishment coordination model in an integrated supply chain with one vendor and multi buyers’. Eur J Oper Res 159:406–419

    MATH  Google Scholar 

  28. Zavanella L, Zanoni S (2009) A one vendor multi buyer integrated production inventory model: the consignment stock case. Int J Prod Econ 118:225–232

    Google Scholar 

  29. Ghiami Y, Williams T (2015) A two-echelon production–inventory model for deteriorating items with multi buyers’. Int J Prod Econ 159:233–240

    Google Scholar 

  30. Ghare PM, Shrader GF (1963) A model for exponentially decaying inventories. J Ind Eng 14:238–243

    Google Scholar 

  31. Goyal SK, Giri BC (2001) Recent trends in modeling of deteriorating inventory. Eur J Oper Res 134:1–16

    MathSciNet  MATH  Google Scholar 

  32. Li R, Lan H, Mawhinney JR (2010) A review on deteriorating inventory study. J Serv Sci Manag 3:117–129

    Google Scholar 

  33. Raafat F (1991) Survey of literature on continuously deteriorating inventory models. J Oper Res Soc 42:27–37

    MATH  Google Scholar 

  34. Hwang HS (1997) A study on an inventory model for items with Weibull ameliorating. Comput Ind Eng 33:701–704

    Google Scholar 

  35. Hwang HS (1999) inventory models for both deteriorating and ameliorating items. Comput Ind Eng 37:257–260

    Google Scholar 

  36. Mondal B, Bhunia AK, Maiti M (2003) An inventory system of ameliorating items for price dependent demand rate. Comput Ind Eng 45:443456

    Google Scholar 

  37. Law S-T, Wee HM (2006) An integrated production–inventory model for ameliorating and deteriorating items taking account of time discounting. Math Comput Model 43:673–685

    MATH  Google Scholar 

  38. Wee HM, Loa S-T, Yub J, Chen HC (2008) An inventory model for ameliorating and deteriorating items taking account of time value of money and finite planning horizon. Int J Syst Sci 39:801–807

    MathSciNet  MATH  Google Scholar 

  39. Sana SS (2010) Demand influenced by enterprises initiatives—a multi-item EOQ model of deteriorating and ameliorating items. Math Comput Model 52:284–302

    ADS  MathSciNet  MATH  Google Scholar 

  40. Chan CK, Lee YCE, Goyal SK (2010) A delayed payment method in co-operating a single-vendor multi-buyer supply chain. Int J Prod Econ 127:95–102

    Google Scholar 

  41. Glock CH (2011) A multi-vendor single-buyer integrated inventory model with a variable number of vendors. Comput Ind Eng 60:173–182

    Google Scholar 

  42. Goyal SK, Singh SR, Dem H (2013) Production policy for ameliorating/deteriorating items with ramp type demand. Int J Procure Manag 6(4):444–465

    Google Scholar 

  43. Hoque MA (2011) Generalished single-vendor multi-buyer integrated supply chain models with a better synchronization. Int J Prod Econ 131:463–472

    Google Scholar 

  44. Hoque MA (2011) An optimal solution technique to the single-vendor multi-buyer integrated inventory supply chain by incorporating some realistic factors. Eur J Oper Res 215:80–88

    MathSciNet  MATH  Google Scholar 

  45. Sarmah SP, Acharya D, Goyal SK (2008) Coordination of a single-manufacturer/multi-buyer supply chain with credit option. Int J Prod Econ 111:676–685

    Google Scholar 

  46. Valliathal M, Uthayakumar R (2010) The production–inventory problem for ameliorating/deteriorating items with non-linear shortage cost under inflation and time discounting. Appl Math Sci 4(6):289–304

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shib Sankar Sana.

Appendix

Appendix

To prove that Eq. (19) has one global optimum solution, we differentiate \({\text {JTRC}}(n_i, T_1, T_2)\) with respect to \(T_1\) and \(T_2\) such that

$$\begin{aligned}&\frac{\delta \hbox {JTRC}}{\delta T_1} = \biggl [-\frac{O_{\mathrm{v}}}{({}{T_1}+{}{T_2})^2}-\frac{c_{\mathrm{m}}}{({}{T_1}+{}{T_2})^2} \biggl (\int _{0}^{{}{T_2}} {}{{t_2}}^{-1+y} x y \sum _{i=1}^{n} \biggl (1+{}{{t_2}}^y x-{}{{t_2}} \theta \biggl ) \\&\quad \biggl (-{}{{t_2}}+{}{T_2}-\frac{\biggl (-{}{{t_2}}^{1+y}+{}{T_2}^{1+y}\biggl ) x}{1+y} \\&\quad +\frac{1}{2}\biggl (-{}{{t_2}}^2+{}{T_2}^2\biggl ) \theta \biggl ) d_i \, \hbox {d}{}{{t_2}} \\&\quad +\frac{{}{T_1}^y x \biggl (2 (1+y)+{}{T_1}^y x (1+y)-2 {}{T_1} y \theta \biggl ) \sum _{i=1}^n \biggl (1-{}{T_1}^y x+{}{T_1} \theta \biggl ) \biggl ({}{T_2}-\frac{{}{T_2}^{1+y} x}{1+y}+\frac{{}{T_2}^2 \theta }{2}\biggl ) d_i}{2 (1+y)}\biggl ) \\&\quad + \frac{c_{\mathrm{m}}}{({}{T_1}+{}{T_2})^2} \biggl [ \frac{{}{T_1}^y x \biggl (2 (1+y)+{}{T_1}^y x (1+y)-2 {}{T_1} y \theta \biggl )\sum _{i=1}^{n} \biggl (-{}{T_1}^{-1+y} x y+\theta \biggl ) \biggl ({}{T_2}-\frac{{}{T_2}^{1+y} x}{1+y}+\frac{{}{T_2}^2 \theta }{2}\biggl ) d_i}{2 (1+y)} \\&\quad +\frac{{}{T_1}^y x \biggl ({}{T_1}^{-1+y} x y (1+y)-2 y \theta \biggl )\sum _{i=1}^{n} \biggl (1-{}{T_1}^y x+{}{T_1} \theta \biggl ) \biggl ({}{T_2}-\frac{{}{T_2}^{1+y}x}{1+y}+\frac{{}{T_2}^2 \theta }{2}\biggl ) d_i}{2 (1+y)} \\&\quad +\frac{{}{T_1}^{-1+y} x y \biggl (2 (1+y)+{}{T_1}^y x (1+y)-2 {}{T_1} y \theta \biggl )\sum _{i=1}^{n} \biggl (1-{}{T_1}^y x+{}{T_1} \theta \biggl ) \biggl ({}{T_2}-\frac{{}{T_2}^{1+y} x}{1+y}+\frac{{}{T_2}^2 \theta }{2}\biggl ) d_i}{2 (1+y)}\biggl ] \\&\quad +\sum _{i=1}^{n} -\frac{n_i O_{\mathrm{b}}}{({}{T_1}+{}{T_2})^2} -\frac{1}{({}{T_1}+{}{T_2})^2}{}{h_{\mathrm{v}}} \biggl (\int _0^{{}{T_2}} \biggl (\sum _{i=1}^{n} \biggl (1+{}{{t_2}}^y x-{}{{t_2}} \theta \biggl ) \\&\quad \biggl (-{}{{t_2}}+{}{T_2}-\frac{\biggl (-{}{{t_2}}^{1+y}+{}{T_2}^{1+y}\biggl ) x}{1+y} \\&\quad +\frac{1}{2} \biggl (-{}{{t_2}}^2+{}{T_2}^2\biggl ) \theta \biggl ) d_i\biggl ) \, \hbox {d}{}{{t_2}} +\biggl ({}{T_1}+\frac{{}{T_1}^{1+y} x}{1+y}-\frac{{}{T_1}^2 \theta }{2}\biggl ) \\&\quad \sum _{i=1}^{n} \biggl (1-{}{T_1}^y x+{}{T_1} \theta \biggl ) \biggl ({}{T_2}-\frac{{}{T_2}^{1+y} x}{1+y}+\frac{{}{T_2}^2 \theta }{2}\biggl ) d_i \\&\quad -\sum _{i=1}^{n} n_i \sum _{i=1}^{n} \int _0^{\frac{{}{T_1}+{}{T_2}}{n_i}} \biggl (\sum _{i=1}^{n} \frac{d_i}{\theta }\biggl ) \sum _{i=1}^{n} (1-t \theta ) \\&\quad \biggl (-t \theta +\frac{({}{T_1}+{}{T_2}) \theta }{n_i}\biggl ) \, \hbox {d}t\biggl )-\frac{h_{\mathrm{b}} p_{\mathrm{b}}}{({}{T_1}+{}{T_2})^2} \sum _{i=1}^{n} n_i \sum _{i=1}^{n} \int _0^{\frac{{}{T_1}+{}{T_2}}{n_i}} \biggl (\sum _{i=1}^n \frac{d_i}{\theta }\biggl ) \\&\quad \sum _{i=1}^n (1-t \theta ) \biggl (-t \theta +\frac{({}{T_1}+{}{T_2}) \theta }{n_i}\biggl ) \, \hbox {d}t \end{aligned}$$
$$\begin{aligned}&+\frac{h_{\mathrm{v}}}{{{}{T_1}+{}{T_2}}} \biggl [\biggl ({}{T_1}+\frac{{}{T_1}^{1+y} x}{1+y}-\frac{{}{T_1}^2 \theta }{2}\biggl ) \sum _{i=1}^{n} \biggl (-{}{T_1}^{-1+y} x y+\theta \biggl ) \nonumber \\&\quad \biggl ({}{T_2}-\frac{{}{T_2}^{1+y} x}{1+y}+\frac{{}{T_2}^2 \theta }{2}\biggl ) d_i + \biggl (1+{}{T_1}^y x-{}{T_1} \theta \biggl ) \nonumber \\&\quad \sum _{i=1}^{n} \biggl (1-{}{T_1}^y x+{}{T_1} \theta \biggl ) \biggl ({}{T_2}-\frac{{}{T_2}^{1+y} x}{1+y}+\frac{{}{T_2}^2 \theta }{2}\biggl ) d_i \nonumber \\&\quad -\sum _{i=1}^{n} n_i \sum _{i=1}^{n} \int _0^{\frac{{}{T_1}+{}{T_2}}{n_i}} \biggl (\sum _{i=1}^n \frac{d_i}{\theta }\biggl )\sum _{i=1}^{n}\frac{\theta (1-t \theta )}{n_i} \, \hbox {d}t\biggl ] \nonumber \\&+ \frac{{h_{\mathrm{b}}} {}{p_{\mathrm{b}}}}{{{}{T_1}+{}{T_2}}} \sum _{i=1}^n n_i \sum _{i=1}^{n} \int _0^{\frac{{}{T_1}+{}{T_2}}{n_i}} \biggl (\sum _{i=1}^{n} \frac{d_i}{\theta }\biggl ) \sum _{i=1}^{n} \frac{\theta (1-t \theta )}{n_i} \, \hbox {d}t +\sum _{i=1}^{n} \nonumber \\&\quad \biggl (\frac{{}{p_{\mathrm{v}}} \sum _{i=1}^{n} \biggl (-{}{T_1}^{-1+y} x y+\theta \biggl ) \biggl ({}{T_2}-\frac{{}{T_2}^{1+y} x}{1+y}+\frac{{}{T_2}^2 \theta }{2}\biggl ) d_i}{{}{T_1}+{}{T_2}}\nonumber \\&\quad -\frac{{}{p_{\mathrm{v}}} \sum _{i=1}^{n} \biggl (1-{}{T_1}^y x+{}{T_1} \theta \biggl ) \biggl ({}{T_2}-\frac{{}{T_2}^{1+y} x}{1+y}+\frac{{}{T_2}^2 \theta }{2}\biggl ) d_i}{({}{T_1}+{}{T_2})^2}\biggl ) \nonumber \\&\quad +\sum _{i=1}^n \biggl (\frac{n_i p_{\mathrm{b}} \biggl (-\frac{d_i}{n_i}+\sum _{i=1}^{n} \frac{d_i}{n_i}\biggl )}{{}{T_1}+{}{T_2}} \nonumber \\&\quad -\frac{n_i p_{\mathrm{b}} \biggl (-\frac{({}{T_1}+{}{T_2}) d_i}{n_i}+\sum _{i=1}^n \frac{({}{T_1}+{}{T_2}) d_i}{n_i}\biggl )}{({}{T_1}+{}{T_2})^2}\biggl ), {}{Re}[y] > 0, \biggl ]. \end{aligned}$$
(19)
$$\begin{aligned}&\quad +\frac{{}{h_{\mathrm{v}}}}{{{}{T_1}+{}{T_2}}} \biggl (\int _0^{{}{T_2}} \biggl (\sum _{i=1}^{n} \biggl (1+{}{{t_2}}^y x-{}{{t_2}} \theta \biggl ) \nonumber \\&\quad \biggl (1-{}{T_2}^y x+{}{T_2} \theta \biggl ) d_i\biggl ) \, \hbox {d}{}{{t_2}}\nonumber \\&\quad +\biggl ({}{T_1}+\frac{{}{T_1}^{1+y} x}{1+y}-\frac{{}{T_1}^2 \theta }{2}\biggl ) \nonumber \\&\quad \sum _{i=1}^{n} \biggl (1-{}{T_1}^y x+{}{T_1} \theta \biggl ) \biggl (1-{}{T_2}^y x+{}{T_2} \theta \biggl ) d_i \nonumber \\&\quad -\sum _{i=1}^{n} n_i \sum _{i=1}^{n} \int _{0}^{\frac{{}{T_1}+{}{T_2}}{n_i}} \biggl (\sum _{i=1}^{n} \frac{d_i}{\theta }\biggl ) \sum _{i=1}^{n} \frac{\theta (1-t \theta )}{n_i} \, \hbox {d}t\biggl ) \nonumber \\&\quad +\frac{{}{h_{\mathrm{b}}} {}{p_{\mathrm{b}}}}{{{}{T_1}+{}{T_2}}} \sum _{i=1}^{n} n_i \sum _{i=1}^{n} \int _{0}^{\frac{{}{T_1}+{}{T_2}}{n_i}} \biggl (\sum _{i=1}^{n} \frac{d_i}{\theta }\biggl ) \sum _{i=1}^{n} \frac{\theta (1-t \theta )}{n_i} \, \hbox {d}t \nonumber \\&\quad +\sum _{i=1}^{n} \biggl (\frac{{}{p_{\mathrm{v}}} \sum _{i=1}^{n} \biggl (1-{}{T_1}^y x+{}{T_1} \theta \biggl ) \biggl (1-{}{T_2}^y x+{}{T_2} \theta \biggl ) d_i}{{}{T_1}+{}{T_2}}\nonumber \\&\quad -\frac{{}{p_{\mathrm{v}}}}{{({}{T_1}+{}{T_2})^2}} \sum _{i=1}^{n} \biggl (1-{}{T_1}^y x+{}{T_1} \theta \biggl ) \nonumber \\&\quad \biggl ({}{T_2}-\frac{{}{T_2}^{1+y}x}{1+y}+\frac{{}{T_2}^2 \theta }{2}\biggl ) d_i\biggl ) +\sum _{i=1}^{n} \nonumber \\&\quad \biggl (\frac{n_i p_{\mathrm{b}} \biggl (-\frac{d_i}{n_i}+\sum _{i=1}^{n} \frac{d_i}{n_i}\biggl )}{{}{T_1}+{}{T_2}} \nonumber \\&\quad -\frac{n_i p_{\mathrm{b}} \biggl (-\frac{({}{T_1}+{}{T_2}) d_i}{n_i}+\sum _{i=1}^n \frac{({}{T_1}+{}{T_2}) d_i}{n_i}\biggl )}{({}{T_1}+{}{T_2})^2}\biggl ), {}{Re}[y]>0\biggl ]. \end{aligned}$$
(20)

Now, set \(\frac{\delta {\text {JTRC}}}{\delta T_1} = \frac{\delta {\text {JTRC}}}{\delta T_2} = 0\), and find the optimum value of \(T_1\) and \(T_2\), say \(T_{1}^{*}\) and \(T_{2}^{*}\). The sufficient condition for the joint relevant total cost \( \hbox {JRTC} (n_i, T_1, T_2) \) for global optimum solution is

$$\left\vert\begin{array}{ll}\frac{{\delta}^2{\text{JTRC}}}{\delta T_1^2}& \frac{{\delta}^2{\text{JTRC}}}{\delta T_1 \delta T_2}\\\frac{{\delta}^2{\text{JTRC}}}{\delta T_2 \delta T_1} &\frac{{\delta}^2{\text{JTRC}}}{\delta T_2^2}\\ \end{array}\right\vert >0$$

Hence, the expression of two derivative is nonlinear. Therefore, we are not writing the whole expression.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vandana, Sana, S.S. A Two-Echelon Inventory Model for Ameliorating/Deteriorating Items with Single Vendor and Multi-buyers. Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci. 90, 601–614 (2020). https://doi.org/10.1007/s40010-018-0568-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40010-018-0568-5

Keywords

Mathematics Subject Classification

Navigation