Skip to main content

Advertisement

Log in

Prioritization of strategies to overcome the barriers in Industry 4.0: a hybrid MCDM approach

  • Application Article
  • Published:
OPSEARCH Aims and scope Submit manuscript

Abstract

Over the past few years, Industry 4.0 has received significant global attention owning to its capability to enhance the sustainability and future competitiveness of the manufacturing sector. However, manufacturers are experiencing numerous difficulties while implementing Industry 4.0 due to the sheer number of barriers. In light of this, the present study aims to identify the Industry 4.0 barriers and prioritize the strategies to overcome these barriers for the successful implementation of Industry 4.0. Based on the extensive literature review and discussion with experts, a total of twenty-three Industry 4.0 barriers and eighteen strategies were identified and finalized. This research proposes a hybrid framework using Modified Stepwise Weight Assessment Ratio Analysis and Weighted Aggregated Sum Product Assessment methods to propose the strategies to overcome the Industry 4.0 barriers. In order to demonstrate the practical applicability of the proposed framework, an empirical case investigation of an Indian auto component manufacturing company has been carried out. The findings of this study reveal that “Commitment from top management towards Industry 4.0 implementation” is the top-ranked strategy, followed by ‘Framing of a strategic roadmap for Industry 4.0 implementation’ and  “Align people, process and technology for effective change management” to mitigate the impact of Industry 4.0 barriers. The proposed framework offers a systematic approach for the practitioners to understand and analyze the various barriers and strategies to overcome these barriers for successful implementation of Industry 4.0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Aghdaie, M.H., Zolfani, S.H., Zavadskas, E.K.: Decision making in machine tool selection: an integrated approach with SWARA and COPRAS-G methods. Eng. Econ. 24(1), 5–17 (2013)

    Google Scholar 

  2. Anderson, Perrin: Tech adoption climbs among older adults. https://www.pewresearch.org/internet/2017/05/17/barriers-to-adoption-and-attitudes-towards-technology/ (2017). Accessed 12 April 2020

  3. Bag, S., Telukdarie, A., Pretorius, J.H.C., Gupta, S.: Industry 4.0 and supply chain sustainability: framework and future research directions. Benchmarking Int. J. (2018). https://doi.org/10.1108/BIJ-03-2018-0056

    Article  Google Scholar 

  4. Ben-Daya, M., Hassini, E., Bahroun, Z.: Internet of things and supply chain management: a literature review. Int. J. Prod. Res. 57(15–16), 4719–4742 (2019)

    Article  Google Scholar 

  5. Bibby, L., Dehe, B.: Defining and assessing industry 4.0 maturity levels–case of the defense sector. Prod. Plan. Control 29(12), 1030–1043 (2018)

    Article  Google Scholar 

  6. Castelo-Branco, I., Cruz-Jesus, F., Oliveira, T.: Assessing Industry 4.0 readiness in manufacturing: evidence for the European Union. Comput. Ind. 107, 22–32 (2019)

    Article  Google Scholar 

  7. Chauhan, C., Sharma, A., Singh, A.: A SAP-LAP linkages framework for integrating Industry 40 and circular economy. Benchmarking Int. J. (2019). https://doi.org/10.1108/BIJ-10-2018-0310

    Article  Google Scholar 

  8. Chauhan, A., Jakhar, S.K., Chauhan, C.: The interplay of circular economy with industry 4.0 enabled smart city drivers of healthcare waste disposal. J. Clean. Prod. (2020). https://doi.org/10.1016/j.jclepro.2020.123854

    Article  Google Scholar 

  9. Chiarini, A., Belvedere, V., Grando, A.: Industry 4.0 strategies and technological developments. An exploratory research from Italian manufacturing companies. Prod. Plan. Control. 1, 2 (2020). https://doi.org/10.1080/09537287.2019.1710304

    Article  Google Scholar 

  10. Culot, G., Orzes, G., Sartor, M., Nassimbeni, G.: The future of manufacturing: a Delphi-based scenario analysis on Industry 4.0. Forecast. Soc. Change, Technol (2020). https://doi.org/10.1016/j.techfore.2020.120092

    Book  Google Scholar 

  11. Cunha, T.P., Méxas, M.P., da Silva, A.C., Quelhas, O.L.G.: Proposal guidelines to implement the concepts of industry 4.0 into information technology companies. TQM J. 32(4), 741–759 (2020)

    Article  Google Scholar 

  12. Da Silva, V.L., Kovaleski, J.L., Pagani, R.N., Silva, J.D.M., Corsi, A.: Implementation of Industry 4.0 concept in companies: empirical evidences. Int. J. Comput. Integr. Manuf. 33(4), 325–342 (2020)

    Article  Google Scholar 

  13. de Sousa Jabbour, A.B.L., Jabbour, C.J.C., Foropon, C., Godinho Filho, M.: When titans meet–Can industry 4.0 revolutionise the environmentally-sustainable manufacturing wave? The role of critical success factors. Technol. Forecast. Soc. Change 132, 18–25 (2018)

    Article  Google Scholar 

  14. Dev, N.K., Shankar, R., Swami, S.: Diffusion of green products in industry 40: reverse logistics issues during design of inventory and production planning system. Int. J. Prod. Econ. (2019). https://doi.org/10.1016/j.ijpe.2019.107519

    Article  Google Scholar 

  15. Erol, S., Schumacher, A., Sihn, W.: Strategic guidance towards Industry 4.0: a three-stage process model. In: International conference on competitive manufacturing (COMA16) Stellenbosch, South Africa, vol 9(1), pp 495–501 (2016)

  16. Fatorachian, H., Kazemi, H.: A critical investigation of Industry 4.0 in manufacturing: theoretical operationalisation framework. Prod. Plan. Control 29(8), 633–644 (2018)

    Article  Google Scholar 

  17. Freitag, M., Zelm, M.: Standardization connecting the initiative ‘industry 4.0’ and service life cycle. In: Proceedings of the Workshops of the IWEI 2015 Conference, Co-located with the 6th International IFIP Working Conference on Enterprise Interoperability IWEI.1414 (2015)

  18. Ghadge, A., Kara, M.E., Moradlou, H., Goswami, M.: The impact of Industry 4.0 implementation on supply chains. J. Manuf. Technol. Manag. 31(4), 669–686 (2020)

    Article  Google Scholar 

  19. Ghobakhloo, M.: The future of manufacturing industry: a strategic roadmap toward Industry 4.0. J. Manuf. Technol. Manag. 29(6), 910–936 (2018)

    Article  Google Scholar 

  20. Ghorshi Nezhad, M.R., Zolfani, S.H., Moztarzadeh, F., Zavadskas, E.K., Bahrami, M.: Planning the priority of high-tech industries based on SWARA-WASPAS methodology: the case of the nanotechnology industry in Iran. Econ. Res. Ekonomska Istraživanja 28(1), 1111–1137 (2015)

    Article  Google Scholar 

  21. Gökalp, E., Şener, U., Eren, P.E.: Development of an assessment model for industry 4.0: industry 4.0-MM. In: International Conference on Software Process Improvement and Capability Determination, pp. 128–142 (2017)

  22. Gupta, S., Qian, X., Bhushan, B., Luo, Z.: Role of cloud ERP and big data on firm performance: a dynamic capability view theory perspective. Manag. Decis. 57(8), 1857–1882 (2019)

    Article  Google Scholar 

  23. Hermann, M., Pentek, T., Otto, B.: Design principles for industries 4.0 scenarios. In: 49th Hawaii International Conference on System Sciences (HICSS), pp. 3928–3937. IEEE (2016). https://doi.org/10.1016/j.ress.2009.08.007

  24. Hofmann, E., Rüsch, M.: Industry 4.0 and the current status as well as future prospects on logistics. Comput. Ind. 89, 23–34 (2017)

    Article  Google Scholar 

  25. Holmström, J., Holweg, M., Khajavi, S.H., Partanen, J.: The direct digital manufacturing (r) evolution: definition of a research agenda. Oper. Manag. Res. 9(1–2), 1–10 (2016)

    Article  Google Scholar 

  26. Horváth, D., Szabó, R.Z.: Driving forces and barriers of Industry 4.0: do multinational and small and medium-sized companies have equal opportunities? Technol. Forecast. Soc. Chang. 146, 119–132 (2019)

    Article  Google Scholar 

  27. Ighravwe, D.E., Oke, S.A.: An integrated approach of SWARA and fuzzy COPRAS for maintenance technicians’ selection factors ranking. Int. J. Syst. Assur. Eng. Manag. 10(6), 1615–1626 (2019)

    Article  Google Scholar 

  28. IHS Auto Database, Light Vehicle Sales Forecast, ihsmarkit.com. Accessed 12 April 2020

  29. Kagermann, H., Wahlster, W., Helbig, J.: Recommendations for implementing the strategic initiative Industrie 4.0: final report of the Industrie 4.0 Working Group. Acatech-National Academy of Science and Engineering, Germany (2013)

  30. Kamble, S.S., Gunasekaran, A., Gawankar, S.A.: Sustainable Industry 4.0 framework: a systematic literature review identifying the current trends and future perspectives. Process Saf. Environ. Prot. 117, 408–425 (2018)

    Article  Google Scholar 

  31. Kamble, S.S., Gunasekaran, A., Sharma, R.: Analysis of the driving and dependence power of barriers to adopt industry 4.0 in Indian manufacturing industry. Comput. Ind. 101, 107–119 (2018)

    Article  Google Scholar 

  32. Kersuliene, V., Zavadskas, E.K., Turskis, Z.: Selection of rational dispute resolution method by applying new stepwise weight assessment ratio analysis (SWARA). J. Bus. Econ. Manag. 11(2), 243–258 (2010)

    Article  Google Scholar 

  33. Kiel, D., Müller, J.M., Arnold, C., Voigt, K.I.: Sustainable industrial value creation: benefits and challenges of industry 40. Int. J. Innov. Manag. 21(8), 1740015 (2017)

    Article  Google Scholar 

  34. Klaus, H.: Future technologies that will drive Industry 4.0, World Economic Forum, Global Competitiveness Report. https://www.weforum.org/agenda/2019/01/futuretechnologies-will-drive-industry-4-0/ (2019). Accessed 23 August 2020

  35. Koch, V., Kuge, S., Geissbauer, R., Schrauf, S.: Industry 4.0: opportunities and challenges of the industrial internet, Strategy and PwC. https://www.pwc.nl/en/assets/documents/pwc-industrie-4-0.pdf (2014). Accessed 24 August 2020

  36. Kouhizadeh, M., Zhu, Q., Sarkis, J.: Blockchain and the circular economy: potential tensions and critical reflections from practice. Prod. Plan. Control 31(11–12), 950–966 (2020)

    Article  Google Scholar 

  37. Leitão, P., Colombo, A.W., Karnouskos, S.: Industrial automation based on cyber physical systems technologies: prototype implementations and challenges. Comput. Ind. 81, 11–25 (2016)

    Article  Google Scholar 

  38. Lezzi, M., Lazoi, M., Corallo, A.: Cybersecurity for Industry 4.0 in the current literature: a reference framework. Comput. Ind. 103, 97–110 (2018)

    Article  Google Scholar 

  39. Liao, Y., Deschamps, F., Loures, E.D.F.R., Ramos, L.F.P.: Past, present and future of Industry 4.0-a systematic literature review and research agenda proposal. Int. J. Prod. Res. 55(12), 3609–3629 (2017)

    Article  Google Scholar 

  40. Liboni, L.B., Liboni, L.H., Cezarino, L.O.: Electric utility 4.0: trends and challenges towards process safety and environmental protection. Process Saf. Environ. Prot. 117, 593–605 (2018)

    Article  Google Scholar 

  41. Lim, C.H., Lim, S., How, B.S., Ng, W.P.Q., Ngan, S.L., Leong, W.D., Lam, H.L.: A review of industry 4.0 revolution potential in a sustainable and renewable palm oil industry: HAZOP approach. Renew. Sustain. Energy Rev. 135, 110223 (2021). https://doi.org/10.1016/j.rser.2020.110223

    Article  Google Scholar 

  42. Lin, D., Lee, C.K.M., Lau, H., Yang, Y.: Strategic response to Industry 4.0: an empirical investigation on the Chinese automotive industry. Ind. Manag. Data Syst. 118(3), 589–605 (2018)

    Article  Google Scholar 

  43. Luthra, S., Mangla, S.K.: Evaluating challenges to Industry 4.0 initiatives for supply chain sustainability in emerging economies. Process Saf. Environ. Prot. 117, 168–179 (2018)

    Article  Google Scholar 

  44. Mangla, S.K., Kusi-Sarpong, S., Luthra, S., Bai, C., Jakhar, S.K., Khan, S.A.: Operational excellence for improving sustainable supply chain performance. Resour. Conserv. Recycl. 142, 277–278 (2019)

    Article  Google Scholar 

  45. Mardani, A., Nilashi, M., Zakuan, N., Loganathan, N., Soheilirad, S., Saman, M.Z.M., Ibrahim, O.: A systematic review and meta-analysis of SWARA and WASPAS methods: theory and applications with recent fuzzy developments. Appl. Soft Comput. 57, 265–292 (2017)

    Article  Google Scholar 

  46. Masood, T., Egger, J.: Augmented reality in support of Industry 4.0—Implementation challenges and success factors. Robot. Comput. Integr. Manuf. 58, 181–195 (2019)

    Article  Google Scholar 

  47. Moeuf, A., Pellerin, R., Lamouri, S., Tamayo-Giraldo, S., Barbaray, R.: The industrial management of SMEs in the era of Industry 4.0. Int. J. Prod. Res. 56(3), 1118–1136 (2018)

    Article  Google Scholar 

  48. Moktadir, M.A., Ali, S.M., Kusi-Sarpong, S., Shaikh, M.A.A.: Assessing challenges for implementing Industry 4.0: implications for process safety and environmental protection. Process Saf. Environ. Prot. 117, 730–741 (2018)

    Article  Google Scholar 

  49. Müller, J.M., Buliga, O., Voigt, K.I.: Fortune favors the prepared: how SMEs approach business model innovations in Industry 4.0. Technol. Forecast. Soc. Chang. 132, 2–17 (2018)

    Article  Google Scholar 

  50. Nascimento, D.L.M., Alencastro, V., Quelhas, O.L.G., Caiado, R.G.G., Garza-Reyes, J.A., Rocha-Lona, L., Tortorella, G.: Exploring Industry 4.0 technologies to enable circular economy practices in a manufacturing context. J. Manuf. Technol. Manag. 30(3), 607–627 (2019)

    Article  Google Scholar 

  51. O’Donovan, P., Gallagher, C., Leahy, K., O’Sullivan, D.T.: A comparison of fog and cloud computing cyber-physical interfaces for Industry 4.0 real-time embedded machine learning engineering applications. Comput. Ind. 110, 12–35 (2019)

    Article  Google Scholar 

  52. Oesterreich, T.D., Teuteberg, F.: Understanding the implications of digitization and automation in the context of Industry 4.0: a triangulation approach and elements of a research agenda for the construction industry. Comput. Ind. 83, 121–139 (2016)

    Article  Google Scholar 

  53. Orzes, G., Rauch, E., Bednar, S., Poklemba, R.: Industry 4.0 implementation barriers in small and medium sized enterprises: a focus group study. In: IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), pp 1348–1352 (2018)

  54. Porter, M.E., Heppelmann, J.E.: How smart, connected products are transforming companies. Harv. Bus. Rev. 93(10), 96–114 (2015)

    Google Scholar 

  55. Prajapati, H., Kant, R., Shankar, R.: Prioritizing the solutions of reverse logistics implementation to mitigate its barriers: a hybrid modified SWARA and WASPAS approach. J. Clean. Prod. (2019). https://doi.org/10.1016/j.jclepro.2019.118219

    Article  Google Scholar 

  56. PwC. https://www.pwc.in/assets/pdfs/industries/automotive/indian-automotive-sector.pdf (2019). Accessed 12 April 2020

  57. Rahman, S.M., Perry, N., Müller, J.M., Kim, J., Laratte, B.: End-of-life in industry 4.0: ignored as before? Resour. Conserv. Recycl. 154, 104539 (2020). https://doi.org/10.1016/j.resconrec.2019.104539

    Article  Google Scholar 

  58. Raj, A., Dwivedi, G., Sharma, A., de Sousa Jabbour, A.B.L., Rajak, S.: Barriers to the adoption of industry 4.0 technologies in the manufacturing sector: an inter-country comparative perspective. Int. J. Prod. Econ. 224, 107546 (2020). https://doi.org/10.1016/j.ijpe.2019.107546

    Article  Google Scholar 

  59. Raj, T., Shankar, R., Suhaib, M.: A review of some issues and identification of some barriers in the implementation of FMS. Int. J. Flex. Manuf. Syst. 19(1), 1–40 (2007)

    Article  Google Scholar 

  60. Ramirez-Peña, M., Sotano, A.J.S., Pérez-Fernandez, V., Abad, F.J., Batista, M.: Achieving a sustainable shipbuilding supply chain under I4.0 perspective. J. Clean. Prod. 244, 118789 (2020). https://doi.org/10.1016/j.jclepro.2019.118789

    Article  Google Scholar 

  61. Rejikumar, G., Arunprasad, P., Persis, J., Sreeraj, K.M.: Industry 4.0: key findings and analysis from the literature arena. Benchmarking Int J 26(8), 2514–2542 (2019)

    Article  Google Scholar 

  62. Saaty, T.L.: Decision making with the analytic hierarchy process. Int. J. Serv. Sci. 1(1), 83–98 (2008)

    Google Scholar 

  63. Santos, C., Mehrsai, A., Barros, A.C., Araújo, M., Ares, E.: Towards Industry 4.0: an overview of European strategic roadmaps. Procedia Manufacturing 13, 972–979 (2017)

    Article  Google Scholar 

  64. Schneider, P.: Managerial challenges of Industry 4.0: an empirically backed research agenda for a nascent field. Rev. Manag. Sci. 12(3), 803–848 (2018)

    Article  Google Scholar 

  65. Schröder, C.: The challenges of industry 4.0 for small and medium-sized enterprises. Friedrich-Ebert-Stiftung: Bonn, Germany. http://library.fes.de/pdf-files/wiso/12683.pdf (2016). Accessed 12 April 2020

  66. Schumacher, A., Erol, S., Sihn, W.: A maturity model for assessing Industry 4.0 readiness and maturity of manufacturing enterprises. Procedia Cirp 52(1), 161–166 (2016)

    Article  Google Scholar 

  67. Schwab, K.: The fourth industrial revolution. https://books.google.com/books?hl=en&lr=&id=ST_FDAAAQBAJ&oi=fnd&pg=PR7&ots=DTou9SsySN&sig=39IOso0x0p-E_lWx7DEGQw7E1D8 (2017). Accessed 18 April 2020

  68. Shamim, S., Cang, S., Yu, H., Li, Y.: Management approaches for Industry 4.0: a human resource management perspective. Paper Presented at the IEEE Congress on Evolutionary Computation, Vancouver, IEEE, New York City, NY, July, pp. 5309–5316 (2016)

  69. Singh, R.K., Modgil, S.: Supplier selection using SWARA and WASPAS: a case study of Indian cement industry. Meas. Bus. Excel. 24(2), 243–265 (2020)

    Article  Google Scholar 

  70. Ślusarczyk, B.: Industry 4.0: are we ready? Pol. J. Manag. Stud. (2018). https://doi.org/10.17512/pjms.2018.17.1.19

    Article  Google Scholar 

  71. Sony, M., Naik, S.: Critical factors for the successful implementation of Industry 4.0: a review and future research direction. Prod. Plan. Control 31(10), 799–815 (2020)

    Article  Google Scholar 

  72. Sremac, S., Stević, Ž., Pamučar, D., Arsić, M., Matić, B.: Evaluation of a third-party logistics (3PL) provider using a rough SWARA–WASPAS model based on a new rough dombi aggregator. Symmetry 10(8), 305 (2018)

    Article  Google Scholar 

  73. Stankovic, M., Gupta, R., Figueroa, J.: Industry 4.0—opportunities behind the challenge. UNIDO Background Paper, UNIDO General Conference, Vienna. https://www.unido.org/sites/default/files/files/2018-11/UNIDO_GC17_Industry40.pdf (2017). Accessed 9 April 2020

  74. Stanujkic, D., Karabasevic, D., Zavadskas, E.K.: A framework for the selection of a packaging design based on the SWARA method. Eng. Econ. 26(2), 181–187 (2015)

    Article  Google Scholar 

  75. Sung, T.K.: Industry 4.0: a Korea perspective. Technol. Forecast. Soc. Chang. 132, 40–45 (2018)

    Article  Google Scholar 

  76. TATAELXSI. https://www.tataelxsi.com/whats-new/News/How-will-industry-4.0-impact-theindian-automotive-industry.pdf (2018). Accessed 8 April 2020

  77. Telukdarie, A., Buhulaiga, E., Bag, S., Gupta, S., Luo, Z.: Industry 4.0 implementation for multinationals. Process Saf. Environ. Prot. 118, 316–329 (2018)

    Article  Google Scholar 

  78. Thornton, G.: India’s readiness for industry 4.0: a focus on automotive sector. Grand Thornton and Confederation of Indian Industry. https://www.gita.org.in/Attachments/Reports/India%E2%80%99s%20Readiness%20for%20Industry%204.0.pdf (2017). Accessed 1 April 2020

  79. Tom Rafferty. Industry 4.0 = People 4.0 + Process 4.0 + Technology 4.0. https://en.calameo.com/books/001367017ed7ee8f66861 (2008). Accessed 12 April 2020

  80. Tortorella, G.L., Fettermann, D.: Implementation of Industry 4.0 and lean production in Brazilian manufacturing companies. Int. J. Prod. Res. 56(8), 2975–2987 (2018)

    Article  Google Scholar 

  81. Trstenjak, M.: Challenges of human resources management with implementation of industry 4.0. In: Proceedings of the IOTSM2018 Scientific Conference, London, UK, 5 September (2018)

  82. Vafaeipour, M., Zolfani, S.H., Varzandeh, M.H.M., Derakhti, A., Eshkalag, M.K.: Assessment of regions priority for implementation of solar projects in Iran: new application of a hybrid multi-criteria decision-making approach. Energy Convers. Manag. 86, 653–663 (2014)

    Article  Google Scholar 

  83. Vrat, P., Chakrabarti, A., Wadhwa., A., Kumar, V.: Report on setting up of a smart manufacturing Industry 4.0 platform-The Road Ahead. Unpublished report submitted to Department of Heavy Industry (DHI), New Delhi (2020)

  84. Waibel, M.W., Steenkamp, L.P., Moloko, N., Oosthuizen, G.A.: Investigating the effects of smart production systems on sustainability elements. Procedia Manuf. 8, 731–737 (2017)

    Article  Google Scholar 

  85. Weking, J., Stöcker, M., Kowalkiewicz, M., Böhm, M., Krcmar, H.: Leveraging industry 4.0: a business model pattern framework. Int. J. Prod. Econ. 225, 107588 (2020). https://doi.org/10.1016/j.ijpe.2019.107588

    Article  Google Scholar 

  86. Xu, L.D., Xu, E.L., Li, L.: Industry 4.0: state of the art and future trends. Int. J. Prod. Res. 56(8), 2941–2962 (2018)

    Article  Google Scholar 

  87. Zavadskas, E.K., Turskis, Z., Antucheviciene, J., Zakarevicius, A.: Optimization of weighted aggregated sum product assessment. Elektron. Elektrotech. 122(6), 3–6 (2012)

    Article  Google Scholar 

  88. Zhong, R.Y., Xu, C., Chen, C., Huang, G.Q.: Big data analytics for physical internet-based intelligent manufacturing shop floors. Int. J. Prod. Res. 55(9), 2610–2621 (2015)

    Article  Google Scholar 

  89. Zhou, K., Liu, T., Zhou, L.: Industry 4.0: towards future industrial opportunities and challenges. In: 12th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), pp. 2147–2152. IEEE (2015)

  90. Zolfani, S.H., Aghdaie, M.H., Derakhti, A., Zavadskas, E.K., Varzandeh, M.H.M.: Decision making on business issues with foresight perspective; an application of new hybrid MCDM model in shopping mall locating. Expert Syst. Appl. 40(17), 7111–7121 (2013)

    Article  Google Scholar 

  91. Zolfani, S.H., Saparauskas, J.: New application of SWARA method in prioritizing sustainability assessment indicators of energy system. Eng. Econ. 24(5), 408–414 (2013)

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to the two anonymous referees for their constructive suggestions, which has resulted in substantial improvement in the revised version over the original one.

Funding

There is no funding support availed for the research reported in this paper. The authors declare that there is no conflict of interest in preparing this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veepan Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

Steps involved in data collection to rate the relative significance of main criteria and sub-criteria barriers of Industry 4.0 (Tables 7, 8).

Table 7 Rating for Major criteria barriers
Table 8 Rating for Sub-criteria barriers
  • Step A: Organize the major criteria barriers (j) in descending order, on the basis of their expected significance

  • Step B: Assign a value of 100 to the most important criteria.

  • Step C: Start with the second criterion, indicate the relative importance of criterion j to the previous criterion (j − 1).

Step involved in data collection to rate the strategies of Industry 4.0

Step A. Indicate your response on a scale of 1–100 to rate the impact of particular strategies in mitigating the Industry 4.0 barriers (Table 9).

Table 9 Rate the effectiveness of strategies to overcome Industry 4.0 barriers

Appendix 2: Sample calculations for SWARA methodology

Tables 10 and 11 shows the steps required to obtain the weights of major criteria barriers and sub-criteria barriers of Industry 4.0 using the modified SWARA methodology. The input data was collected from three expert groups (E1, E2 and E3) and the response was aggregated using geometric mean.

Table 10 Determining the weights for major criteria barriers
Table 11 Obtaining the weights for (SB), OB, TIB, LB and SCB

Appendix 3: Sample calculations for WASPAS methodology

Tables 12, 13, 14, 15 and 16 shows the steps needed to determine the ranks of Industry 4.0 strategies using the WASPAS methodology. The input data from the three expert groups (E1, E2 and E3) was aggregated by the geometric mean of the values.

Table 12 Obtaining the decision matrix (Step1)
Table 13 Obtaining the normalized decision matrix (step 2)
Table 14 Obtaining the total relative importance values for summarizing part (i.e. WSM) \({\text{Q}}_{\rm{i}}^{\left( 1 \right)}\) (Step 3a)
Table 15 Obtaining total relative importance values for multiplication part (i.e. WPM) \({\text{Q}}_{\rm{i}}^{\left( 2 \right)}\) (Step 3b)
Table 16 Obtaining (Qi) total relative significance values for the alternatives (step 4)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, V., Vrat, P. & Shankar, R. Prioritization of strategies to overcome the barriers in Industry 4.0: a hybrid MCDM approach. OPSEARCH 58, 711–750 (2021). https://doi.org/10.1007/s12597-020-00505-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12597-020-00505-1

Keywords

Navigation