Skip to main content
Log in

A review of some issues and identification of some barriers in the implementation of FMS

  • Published:
International Journal of Flexible Manufacturing Systems Aims and scope Submit manuscript

Abstract

Global competition, advancements in technology and ever changing customers’ demand have made the manufacturing companies to realize the importance of flexible manufacturing systems (FMS). These organizations are looking at FMS as a viable alternative to enhance their competitive edge. But, implementation of this universally accepted and challenging technology is not an easy task. A large number of articles have been reviewed and it is found that the existing literature lacks in providing a clear picture about the implementation of FMS. In this paper, work of various researchers has been studied and it is found that it is really a very difficult task for any organization to transform into FMS on the basis of existing research results. A wide gap exists between the proposed approaches/algorithms for the design of different components of FMS and the real-life complexities. Besides describing the gap in various issues related to FMS, some barriers, which inhibit the adaptation and implementation of FMS, have also been identified in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdin MF (1986) Solution of scheduling problems of job shop type FMS with alternative machine tools. Comput Ind Eng 11(1):19–21

    Google Scholar 

  • Akturk MS, Avci S (1996) Tool allocation and machining conditions optimization for CNC machines. Euro J Operat Res 94:335–348

    Article  MATH  Google Scholar 

  • Akturk MS, Yilmaz H (1996) Scheduling of automated guided vehicles in a decision making heirarchy. Intl J Product Res 34(2):577–591

    MATH  Google Scholar 

  • Atmani A, Lashkari RS (1998) A model of machine-tool selection and operation in FMS. Intl J Product Res 36(5):1339–1349

    Article  MATH  Google Scholar 

  • Azzone G, Bertele U (1989) Measuring the economic effectiveness of flexible automation: a new approach. Intl J Product Res 27:735–746

    Google Scholar 

  • Azzone G, Bertele U (1991) Techniques for measuring the effectiveness of automation. Manuf Syst 48:1–45

    Google Scholar 

  • Baker KR (1974) Introduction to sequencing and scheduling. John Wiley & Sons, New York

    Google Scholar 

  • Balic J, Zivec Z, Cus F (1995) Model of a universal manufacturing interface in CIM for small and medium sized companies. J Mater Process Technol 52(1):102–114

    Article  Google Scholar 

  • Balic J, Pahole I (2003) Optimization of intelligent FMS using data flow matrix method. J Mater Process Technol 133(1–2):13–20

    Article  Google Scholar 

  • Barad M, Sinriech D (1998) A Petri Net model for the operation design and analysis of segmented flow topology (SFT) AGV system. Intl J Product Res 36(5):1401–1426

    Article  MATH  Google Scholar 

  • Barness JW, Chambers JB (1995) Solving the job shop scheduling problem with Tabu search. IIE Trans 27(2):257–263

    Google Scholar 

  • Bartholdi JJ, Platzman KK (1989) Decentralized control of automated guided vehicles on a simple loop. IIE Trans 21(1):76–81

    Google Scholar 

  • Belassi W, Fadlalla A (1998) An integrating framework for FMS diffusion. OMEGA: Intl J Manag Sci 26(6):699–713

    Article  Google Scholar 

  • Berman S, Edan Y (2002) Decentralized autonomous AGV system for material handling. Intl J Product Res 40(15):3995–4006

    Article  Google Scholar 

  • Beskese A, Kahraman C, Irani Z (2004) Quantification of flexibility in advanced manufacturing systems using fuzzy concept. Intl J Product Econ 89(1):45–56

    Article  Google Scholar 

  • Bing WX (1998) Analytic process of resource: a practical approach for scheduling. Comput Ind Eng 35(1–2):97–100

    Article  Google Scholar 

  • Bortfield A, Gehring H (2001) A hybrid genetic algorithm for the container loading problem. Euro J Operat Res 131(1):143–161

    Article  Google Scholar 

  • Browne J, Dubois D, Rathmill K, Sethi SP, Steck KE (1984) Classification of flexible manufacturing systems. FMS Mag 2(2):114–117

    Google Scholar 

  • Bryne MD, Chutima P (1997) Real-time operational control of an FMS with full routing flexibility. Intl J Product Econ 51(1–2):109–113

    Article  Google Scholar 

  • Bozer YA, Srinivasan MM (1989) Tandem configuration for AGV systems offers flexibility and simplicity. Ind Eng 21(2):23–27

    Google Scholar 

  • Buyurgan N, Soygin C, Engin Kilic SES (2004) Tool allocation in flexible manufacturing system with tool alternatives. Robotics Comput-Integrat Manuf 20(4):341–349

    Article  Google Scholar 

  • Buzzacott JA (1982) The fundamental principles of flexibility in manufacturing systems. In: Proceedings of first international conference on flexible manufacturing systems, Brighton, UK, pp 13–22

  • Buzzacott J, Mandelbaum M (1985) Flexibility and productivity in manufacturing systems. In: Proceedings of IIE conference, Chicago, pp 404–413

  • Buzzacott J, Yao D (1986) Flexible manufacturing systems: a review of analytical models. Manag Sci 32(7):890–905

    Google Scholar 

  • Cai X, Li KN (2000) A genetic algorithm for scheduling staff of mixed skills under multi-criteria. Euro J Operat Res 125(2):359–369

    Article  MATH  Google Scholar 

  • Chan FTS (1999) Evaluation of operational control rules in scheduling a flexible manufacturing system. Robot Comput Integrat Manuf 15(2):121–132

    Article  Google Scholar 

  • Chan FTS, Chan HK (2004) Analysis of dynamic control strategies of an FMS under different scenarios. Robot Comput Integrat Manuf 20(5):423–437

    Article  Google Scholar 

  • Chan FTS, Swarnkar R (2006) Ant colony optimization approach to a fuzzy goal programming model for a machine tool selection and operation allocation problem in an FMS. Robot Comput Integrat Manuf 22(4):353–362

    Article  Google Scholar 

  • Chan FTS, Jiang B, Tang NKH (2000) The development of intelligent decision support tools to aid the design of flexible manufacturing systems. Intl J Product Econ 65:73–84

    Article  Google Scholar 

  • Chan FTS, Chan HK, Lau HCW, Ip RWL (2003) Analysis of dynamic dispatching rules for a flexible manufacturing system. J Mater Process Technol 138(1–3):325–331

    Article  Google Scholar 

  • Chan FTS, Chung SH, Chan LY, Finke G, Tiwari MK (2006) Solving distributed FMS scheduling problems subject to maintenance: genetic algorithms approach. Robot Comput Integrat Manuf 22(5–6):493–504

    Article  Google Scholar 

  • Chandra J, Talavage J (1991) Intelligent dispatching for flexible manufacturing. Intl J Product Res 29(11):2259–2278

    MATH  Google Scholar 

  • Chang YL, Sullivan RS, Bagchi U (1984) Experimental investigation of quasi-real-time scheduling in flexible manufacturing systems. In: Proceedings of the first ORSA/TIMS conference on flexible manufacturing systems, Stecke KE, Rajan Suri (eds) Ann arbor, MI, pp 307–312

  • Chen IJ, Chung CH (1991) Effects of loading and routing decisions on performance of flexible manufacturing systems. Intl J Product Res 29(11):2209–2225

    MATH  Google Scholar 

  • Chen IJ, Chung CH (1996) An examination of flexibility measurements and performance of flexible manufacturing systems. Intl J Product Res 34(2):379–394

    MATH  Google Scholar 

  • Chen J-H, Ho S-Y (2005) A novel approach to production planning of flexible manufacturing systems using an efficient multi-objective genetic algorithm. Intl J of Mach Tools Manuf 45:949–957

    Article  Google Scholar 

  • Chen Y-J, Askin RG (1990) A multiobjective evaluation of flexible manufacturing system loading heuristics. Intl J Product Res 28(5):895–911

    Google Scholar 

  • Ching WK, Loh AW (2003) Iterative methods of flexible manufacturing system. Intl J Appl Math Comput 141:553–564

    Article  MathSciNet  MATH  Google Scholar 

  • Cho DI, Parlar M (1991) A survey of maintenance models for multi-unit systems. Euro J Operat Res 51(1):1–23

    Article  Google Scholar 

  • Cordero R (1997) Changing human resources to make flexible manufacturing systems (FMSs) successful. J High Technol Manag Res 8(2):263–275

    Article  Google Scholar 

  • Cormier D, O’Grady P, Saini E (1998) A constraint based genetic algorithm for concurrent engineering. Intl J Product Res 36(6):1679–1697

    Article  MATH  Google Scholar 

  • Craven FW, Slatter RR (1988) An overview of advance manufacturing technology. Appl Ergonom 19(1):9–16

    Article  Google Scholar 

  • Dadone P, Van Landingham HF, Maino B (May 1997) Fuzzy techniques for controlling flexible manufacturing systems. In: Proceedings of the IASTED international conference control’97, Cancum, Mexico

  • Daniel SC (1988) Real-time conflict resolution in automated guided vehicle scheduling. PhD Thesis, Department of Industrial Engineering, Pennsylvania State University, USA

  • Das SK (1996) The measurement of flexibility in manufacturing systems. Intl J Flexible Manuf Syst 8(1):67–93

    Article  Google Scholar 

  • Das SK, Nagendra P (1997) Selection of routes in a flexible manufacturing facility. Intl J Product Econ 48(3):237–247

    Article  Google Scholar 

  • Demmel JG, Askin RG (1992) A multi objective decision for the evaluation of advanced manufacturing system technologies. J Manuf Syst 11:179–194

    Google Scholar 

  • Dixon JR (1992) Measuring manufacturing flexibility: an empirical investigation. Euro J Operat Res 60:131–143

    Article  Google Scholar 

  • Dolinska M, Bessant CB (1995) Dynamic control of flexible manufacturing system. Intl J Adv Manuf Technol 10:131–138

    Article  Google Scholar 

  • Eatson FF, Mansour N (1999) A distributed genetic algorithm for deterministic and stochastic labour scheduling problems. Euro J Operat Res 118(3):505–523

    Article  Google Scholar 

  • Ecker KH, Gupta JND (2005) Scheduling tasks on a flexible manufacturing machine to minimize tool change delays. Euro J Operat Res 164(3):627–638

    Article  MathSciNet  MATH  Google Scholar 

  • Egbelu PJ, Tanchoco JMA (1984) Characterization of automatic guided vehicle dispatching rules. Intl J Product Res 22(3):359–374

    Google Scholar 

  • Egbelu PJ, Tanchoco JMA (1986) Potentials for bi-directional guide-path for automatic guided vehicle based Systems. Intl J Product Res 24(5):1075–1097

    Google Scholar 

  • Fanti MP, Maione B, Piscitelli G, Turchiano B (1992) Two methods for real-time routing selection in flexible manufacturing system. In Proceedings of IEEE international conference on robotics and automation, pp 1158–1166

  • Fry TD, Smith AE (1989) FMS implementation procedure: a case study. IIE Trans 21(3):288–293

    Google Scholar 

  • Gamila MA, Motavalli S (2003) A modeling technique for loading and scheduling problems in FMS. Robot Comput Integrat Manuf 19(1–2):45–54

    Article  Google Scholar 

  • Gaskins RJ, Tanchoco JMA (1987) Flow path design for automated guided vehicle systems. Intl J Product Res 25(5):667–676

    Google Scholar 

  • Giachetti RE, Martinez LD, Saenz OA, Chen C (2003) Analysis of the structural measures of flexibility and agility using a measurement theoretical framework. Intl J Product Econ 86(1):47–62

    Article  Google Scholar 

  • Ghosh S, Gaimon C (1992) Routing flexibility and production scheduling in a flexible manufacturing system. Euro J Operat Res 60(3):344–364

    Article  MATH  Google Scholar 

  • Goldberg DE, Korb B, Deb K (1989) Messy genetic algorithm: motivation analysis and first results. Complex Syst 3(5):493–530

    MathSciNet  MATH  Google Scholar 

  • Gray AE, Siedmann AS, Stecke KE (1993) A synthesis of decision models for tool management in automated manufacturing. Manag Sci 39(5):549–567

    Google Scholar 

  • Green RG (1986) Flexible manufacturing systems: are they in your future? Tool Product, July-1986, pp 35–38

  • Grieco A, Semeraro Q, Tolio T (2001) A review of different approaches to the FMS loading problem. Intl J Flex Manuf Syst 13(4):361–384

    Article  Google Scholar 

  • Groover MP (2003) Automation, production systems and computer integrated manufacturing. Prentice-Hall, Inc, New Delhi

    Google Scholar 

  • Guerrero F, Lozano S, Koltai T, Larraneta J (1999) Machine loading and part type selection in flexible manufacturing systems. Intl J Product Res 37(6):1303–1317

    Article  MATH  Google Scholar 

  • Gupta YP (1988) Organizational issues of flexible manufacturing systems. Technovation 8:255–269

    Article  Google Scholar 

  • Gustavsson S (1984) Flexibility and productivity in complex production processes. Intl J Product Res 22:801–808

    Google Scholar 

  • Guvenir HA, Erel E (1998) Multicriteria inventory classification using a genetic algorithm. Euro J Operat Res 105(1):29–37

    Article  MATH  Google Scholar 

  • Harmonosky CM, Robohn SF (1995) Investigating the application potential of simulation to real-time control decision. Intl J Comput Integrat Manuf 8(2):126–132

    Google Scholar 

  • He Z, Yang T, Tiger A (1996) An exchange heuristic embedded with simulated annealing for due-dates job-shop scheduling. Euro J Operat Res 91(1):99–117

    Article  MATH  Google Scholar 

  • Hertz A, Laporte G, Mittaz M, Stecke K (1998) Heuristics for minimizing tool switches when scheduling part types on a flexible machine. IIE Trans 30:689–694

    Article  Google Scholar 

  • Ho YC, Liu HC (2006) A simulation study on the performance of pick-up dispatching rules for multi-load AGVs. Comput Industr Eng 51(3):445–463

    Google Scholar 

  • Hoff EB, Sarker BR (1998) An overview of path decision and dispatching methods for automated guided vehicles. Integrat Manuf Syst 9(5):296–307

    Article  Google Scholar 

  • Hutchison J (1991) Current and future issues concerning FMS scheduling. OMEGA Intl J Manag Sci 19(6):529–537

    Article  Google Scholar 

  • Hutchison GK, Sinha D (1989) A quantification of the value of flexibility. J Manuf Syst 8(1):47–57

    Google Scholar 

  • Jain S, Foley WJ (2002) Impact of interruption on schedule execution in flexible manufacturing systems. Intl J Flex Manuf Syst 14(4):319–344

    Article  Google Scholar 

  • Jinyan M, Chai SH, Youvi W (1995) FMS job shop scheduling using Lagarangian relaxation method. In: Proceedings of IEEE international conference on robotics and automation, pp 490–495

  • Kaspi M, Tanchoco JMA (1990) Optimal flow path design of uni-directional AGV system. Intl J Product Res 28(6):1023–1030

    Google Scholar 

  • Kenne JP, Boukas EK (2003) Hierarchical control of production and maintenance rates in manufacturing. J Qual Mainten Eng 9(1):66–82

    Article  Google Scholar 

  • Keung KW, Ip WH, Yuen D (2003) An intelligent hierarchical workstation control model for FMS. J Mater Process Technol 139(1–3):134–139

    Article  Google Scholar 

  • Kim YD, Yano CA (1993) Heuristic approach for loading problems in flexible manufacturing systems. IIE Trans 25(1):26–39

    Google Scholar 

  • Kim CW, Tanchoco JMA (1991) Conflict-free shortest-time bi-directional AGV routing. Intl J Product Res 29(12):2377–2391

    MATH  Google Scholar 

  • Klien CM, Kim J (1996) AGV dispatching. Intl J Product Res 34(1):95–110

    Google Scholar 

  • Kolen AWJ, Rinnooy-Kan AHG, Trienekens HWJM (1987) Vehicle routing with time windows. Operat Res 35(2):266–274

    MathSciNet  MATH  Google Scholar 

  • Koren Y, Heisel U, Jovane F, Moriwaki T, Pritschow G, Ulsoy G, Van Brussel H (1999) Reconfigurable manufacturing systems. Annal CIRP 48(2):527–540

    Google Scholar 

  • Kost GG, Zdanowicz R (2005) Modeling of manufacturing systems and robot motions. J Mater Process Technol 164–165:1369–1378

    Article  Google Scholar 

  • Kouvelis P (1991) An optimal tool selection procedure for the initial design phase of a flexible manufacturing systems. Euro J Operat Res 55(2):201–210

    Article  MATH  Google Scholar 

  • Kovacs GL (1992) Pilot plants to assist FMS/CIM Evaluation. Desig Ind Appl Comput Integrat Manuf Syst 5(1):54–60

    Article  Google Scholar 

  • Kumar N, Shankar K (2000) A genetic algorithm for FMS part type selection and machine loading. Intl J Product Res 38(16):3861–3887

    Article  MATH  Google Scholar 

  • Kumar P, Tewari NK, Singh N (1990) Joint consideration of grouping and loading problems in a flexible manufacturing system. Intl J Product Res 28(7):1345–1356

    Google Scholar 

  • Kumar A, Prakash, Tiwari MK, Shankar R, Baveja A (2006) Solving machine-loading problem of a flexible manufacturing system with a constraint-based genetic algorithm. Euro J Operat Res 175(2):1043–1069

  • Langevin A, Lauzon D, Riopel D (1996) Dispatching, routing and scheduling of two automated guided vehicles in a flexible manufacturing systems. Intl J Flex Manuf Syst 8(3):247–262

    Article  Google Scholar 

  • Langevin A, Montreuil B, Riopel D (1994) Spine layout design. Intl J Product Res 32:429–442

    MATH  Google Scholar 

  • Lashkari RS, Dutta SP, Padhye AM (1987) A new formulation of operation allocation problem in flexible manufacturing systems: mathematical modeling and computational experience. Intl J Product Res 25(9):1267–1283

    MATH  Google Scholar 

  • Lee DY, DiCesare F (1992) FMS scheduling using petri nets and heuristic search. In: Proceedings of the IEEE international conference on robotics and automation, Nice, France, vol 2, pp 1057–1062

  • Lee J, Tangjarukij M, Zhu Z (1996) Load selection of automated guided vehicles in flexible manufacturing systems. Intl J Product Res 34(12):3388–3400

    Google Scholar 

  • Lee SM, Jung HJ (1989) A multi-objective production planning model in a flexible manufacturing environment. Intl J Product Res 27(11):1981–1992

    Google Scholar 

  • Liaw C (2000) A hybrid genetic algorithm for the open shop scheduling problem. Euro J Operat Res 124(1):28–42

    Article  MathSciNet  MATH  Google Scholar 

  • Lin JT, Dgen PK (1994) An algorithm for routing control of a tandem guided vehicle system. Intl J Product Res 32:2735–2750

    MATH  Google Scholar 

  • Liu J, Maccarthy BL (1996) The classification of FMS scheduling problems. Intl J Product Res 34(3):647–656

    MATH  Google Scholar 

  • Low C, Yip Y, Wu T (2006) Modelling and heuristics of FMS scheduling with multiple objectives. Comput Operat Res 33:674–694

    Article  MATH  Google Scholar 

  • Maffei MJ, Meredith J (1994) The organizational side of flexible manufacturing technology. Intl J Operat Product Manag 14(8):17–34

    Article  Google Scholar 

  • Maleki RA (1991) Flexible manufacturing systems. Prentice-Hall, Englewood cliffs, NJ, pp 90–100

    Google Scholar 

  • Malmborg CJ (1990) A model for the design of zone control automated guided vehicle systems. Intl J Product Res 28(10):1741–1758

    Google Scholar 

  • Mahadevan B, Narendran TT (1990) Design of an automated guided vehicle-based material handling system for a flexible manufacturing system. Intl J Product Res 28(9):1611–1622

    Google Scholar 

  • Mak KL, Wong STW, Lau HYK (1999) An object-oriented rule-based framework for the specification of flexible manufacturing systems. Comput Industry 39(2):127–146

    Article  Google Scholar 

  • Markus A, Ruutkay Z, Vancza J (1990) Automating fixture design—from imitating practice to understanding principles. Comput Industry 14(1–3):99–108

    Article  Google Scholar 

  • McCutcheon DM (1993) Impacts of vendor project management methods on flexible manufacturing systems implementation: a field study. J Eng Technol Manag 10(4):339–362

    Article  Google Scholar 

  • McDermott KJ, Yao WA (1997) Developing a hybrid programmable logic controller platform for a flexible manufacturing system. Intl J Flex Manuf Syst 9(4):367–374

    Article  Google Scholar 

  • Maxwell WL, Muckstadt JA (1982) Design of automatic guided vehicle systems. IIE Trans 14(2):114–124

    Google Scholar 

  • Montazeri M, Van Wassenhove LN (1990) Analysis of scheduling rules for an FMS. Intl J Product Res 28(4):785–802

    Google Scholar 

  • Mori M, Tseng CC (1997) A genetic algorithm for multi-mode resource constrained project scheduling problem. Euro J Operat Res 100(1):134–141

    Article  MathSciNet  MATH  Google Scholar 

  • Mukhopadhyay SK, Midha S, Krishna (1992) A heuristic procedure for loading problems in flexible manufacturing systems. Intl J Product Res 10(9):2213–2228

  • Mukhopadhyay SK, Singh MK, Srivastava R (1998) FMS loading: a simulated annealing approach. Intl J Product Res 36(6):1529–1547

    Article  MATH  Google Scholar 

  • Nagalingam SV, Lin GCI (1999) Latest development in CIM. Robot Comput Integrat Manuf 15(6):423–430

    Article  Google Scholar 

  • Naidu EB, Vishwanadham N (1992) An expert system for real-time scheduling in flexible manufacturing system. Inform Decision Technol 18:151–170

    MATH  Google Scholar 

  • Nasir N, Elsayad EA (1990) Job shop scheduling with alternative machines. Intl J Product Res 28(9):1595–1609

    Google Scholar 

  • Nelson CA (1986) A scoring model for flexible manufacturing system project selection. Euro J Operat Res 24(3):346–359

    Article  Google Scholar 

  • O’Grady P (1989) Flexible manufacturing systems: present developments and trends. Comput Industry 12(3):241–251

    Article  MathSciNet  Google Scholar 

  • Overmars AH, Toncich DJ (1994) A new FMS architecture based upon networked DSP servo technology. Intl J Flex Manuf Syst 6(4):311–331

    Article  Google Scholar 

  • Ozden M (1988) A simulation study of multiple-load-carrying automated guided vehicles in a flexible manufacturing system. Intl J Product Res 26(8):1353–1366

    Google Scholar 

  • Park CS, Son YK (1988) An Economic evaluation model for advanced manufacturing systems. Eng Econ 34:1–26

    Google Scholar 

  • Park SC (2005) A methodology for creating a virtual model for a flexible manufacturing system. Comput Industry 56(7):734–746

    Article  Google Scholar 

  • Parker RP, Wirth A (1999) Manufacturing flexibility: measures and relationships. Euro J Operat Res 118(3):429–449

    Article  MATH  Google Scholar 

  • Pintelon LMA, Van Puyvelde FLB, Gelders LF (1995) An age-based replacement policy with non-zero repair times for a continuous production process. Intl J Product Res 33(8):2111–2123

    MATH  Google Scholar 

  • Primrose PU, Leonard R (1991) Selecting Technology for Investment in Flexible Manufacturing. Intl J Flex Manuf Syst 4(1):51–77

    Article  Google Scholar 

  • Qiu L, Hsu WJ (2001) A bi-directional path layout for conflict-free routing of AGVs. Intl J Product Res 39(10):2177–2195

    Article  Google Scholar 

  • Qiu L, Hsu WJ, Huang SY, Wang H (2002) Scheduling and routing algorithms for AGVs: a survey. Intl J Product Res 40(3):745–760

    Article  MATH  Google Scholar 

  • Rajamani D, Adil GK (1996) Machine loading in flexible manufacturing systems considering routing flexibility. Intl J Adv Manuf Technol 11(5):372–380

    Article  Google Scholar 

  • Rajotia S, Shankar K, Batra JL (1998) Determination of optimal AGV fleet size for an FMS. Intl J Product Res 36(5):1177–1198

    Article  MATH  Google Scholar 

  • Rao KVS, Deshmukh SG (1994) Strategic framework for implementing flexible manufacturing systems in India. Intl J Operat Product Manag 14(4):50–63

    Article  Google Scholar 

  • Rezaie K, Ostadi BA (2007) Mathematical model for optimal and phased implementation of flexible manufacturing systems. Appl Math Comput 184(2):729–736

    Google Scholar 

  • Robertson TS, Gatignon H (1986) Competitive effect on technology diffusion. J Market 50:1–12

    Article  Google Scholar 

  • Sabuncuoglu I, Lahmar M (2005) An evaluative study of operation grouping policies in an FMS. Intl J Flex Manuf Syst 15(3):217–239

    Article  Google Scholar 

  • Sallez Y, Trentesaux D, Berger T, Tahon C (2004) Product-based and resource-based heterarchical approaches for dynamic FMS scheduling. Comput Ind Eng 46(4):611–623

    Article  Google Scholar 

  • Sakawa M, Kato K, Mori T (1996) Flexible scheduling in a machining center through genetic algorithms. Comput Ind Eng 30(4):931–940

    Article  Google Scholar 

  • Sarma UMBS, Kant S, Rai R, Tiwari MK (2002) Modeling the machine loading problem of FMS and its solution using a Tabu-search based heuristic. Intl J Comput Integr Manuf 15(4):285–295

    Article  Google Scholar 

  • Sarin SC, Chen CS (1987) The machine loading and tool allocation problem in a flexible manufacturing system. Intl J Product Res 25(7):1081–1094

    Google Scholar 

  • Sarkis J (1997) An empirical analysis of productivity and complexity for flexible manufacturing system. Intl J Product Econ 48:39–48

    Article  Google Scholar 

  • Saygin C, Kilic SE (1999) Integrating flexible process plans with scheduling in flexible manufacturing systems. Intl J Adv Manuf Technol 15(4):268–280

    Article  Google Scholar 

  • Sawik T (1990) Modelling and scheduling of flexible manufacturing systems. Euro J Operat Res 45(7):177–190

    Article  MATH  Google Scholar 

  • Sethi AK, Sethi SP (1990) Flexibility in manufacturing: a survey. Intl J Flex Manuf Syst 2(4): 289–328

    Google Scholar 

  • Shankar K, Sriniwasulu A (1989) Some selection methodologies for the loading problem in flexible manufacturing system. Intl J Product Res 27(6):1019–1034

    Google Scholar 

  • Sharafali M, Co HC, Goh M (2004) Production scheduling in a flexible manufacturing system under random demand. Euro J Operat Res 158(1):89–102

    Article  MathSciNet  MATH  Google Scholar 

  • Shaw MJ, Whinston AB (1989) An artificial intelligence approach to the scheduling of flexible manufaturing systems. IIE Trans 21:170–183

    Google Scholar 

  • Shankar R, Vrat P (1999) Automated guided vehicle: an overview. In: Deshmukh SG, Rao PVM (eds) Proceedings of DST sponsored SERC School on AMT, pp 82–93

  • Shewchuk JP, Moodie CL (1998) Definition and classification of manufacturing flexibility types and measures. Intl J Flex Manuf Syst 10(4):325–349

    Article  Google Scholar 

  • Shi-jin W, Li-feng X, Bing-hai Z (2006) Filtered-beam-search-based algorithm for dynamic scheduling in FMS. Robot Comput Integrat Manufact (in press)

  • Smith AE, Fry TD, Philipoom PR, Sweigart JE (1993) A comparison of two intelligent scheduling systems for flexible manufacturing systems. Exp Syst Appl 6:299–308

    Article  Google Scholar 

  • Sodhi MS, Askin RG, Sen S (1994) Multiperiod tool and production assignment in flexible manufacturing systems. Intl J Product Res 32(6):1281–1294

    MATH  Google Scholar 

  • Solimanpur M, Vrat P, Shankar R (2005) An ant algorithm for the single row layout problem. Intl J Comput Operat Res 32:583–598

    Article  MATH  Google Scholar 

  • Spur G, Seligar G, Vichweger B (1986) Cell concepts for flexible automated manufacturing. J Manuf Syst 5(3):171–179

    Article  Google Scholar 

  • Stam A, Kuula M (1991) Selecting a flexible manufacturing system using a multi criteria analysis. Intl J Product Res 29:803–820

    Google Scholar 

  • Stecke KE, Solberg James J (1981) Loading and tool control policies for a flexible manufacturing system. Intl J Product Res 19(5):491–490

    Google Scholar 

  • Stecke KE, Tallbot FB (1983) Heuristic algorithms for flexible manufacturing systems. In: Proceedings of 7th international conference on production research, Windsor, Ontario, pp 570–576

  • Stecke KE (1983) Formulation and solution of nonlinear integer production planning problems for flexible manufacturing systems. Manag Sci 29(3):273–287

    MATH  Google Scholar 

  • Stecke KE (1986) A hierarchical approach to solve machine grouping and loading of flexible manufacturing systems. Euro J Operat Res 24(3):369–378

    Article  MATH  Google Scholar 

  • Suresh NC (1990) Towards an integrated evaluation of flexible automation investments. Intl J Product Res 28:1657–1672

    Google Scholar 

  • Suresh NC (1991) An extended multi-objective replacement model for flexible automation investments. Intl J Product Res 28:1823–1844

    Google Scholar 

  • Son YK, Park CS (1987) Economic measure of productivity. Quality and Flexibility in Advanced Manufacturing Systems. J Manuf Syst 6(3):193–206

    Google Scholar 

  • Son YK, Park CS (1990) Quantifying opportunity costs associated with adding manufacturing flexibility. Intl J Product Res 28:1183–1194

    Google Scholar 

  • Son YK (1991) A cost estimation model for advanced manufacturing systems. Intl J Product Res 29:441–452

    Google Scholar 

  • Swarnkar R, Tiwari MK (2004) Modeling machine loading problems of FMSs and its solution methodology using a Tabu search and simulated annealing-based heuristic approach. Robot Comput Integrat Manuf 20(3):199–209

    Article  Google Scholar 

  • Taghaboni F, Tanchoco JMA (1995) Comparison of dynamic routing techniques for automatic guided vehicle systems. Intl J Product Res 33(10):2653–2669

    MATH  Google Scholar 

  • Tanchoco JMA, Sinriech D (1992) OSL—optimal single loop guided paths for AGVs. Intl J Product Res 30(3):665–681

    Google Scholar 

  • Tiwari MK, Hazarika B, Vidyarthi NK, Jaggi P, Mukhopadhyay SK (1997) A heuristic solution approach to machine loading problem of FMS and its Petri-Net model. Intl J Product Res 35(8):2269–2284

    Article  MATH  Google Scholar 

  • Tiwari MK, Vidyarthi NK (2000) Solving machine loading problem in flexible manufacturing system using genetic algorithm based heuristic approach. Intl J Product Res 38(14):3357–3384

    Article  MATH  Google Scholar 

  • Troxle JN, Blank L (1989) A comprehensive methodology for manufacturing system evaluation and comparison. J Manuf Syst 8:175–183

    Google Scholar 

  • Tsubone H, Horikawa M (1999) A comparison between machine flexibility and routing flexibility. Intl J Flex Manuf Syst 11(1):83–101

    Article  Google Scholar 

  • Van Laarhoven PJM, Aarts EHL, Lenstra JK (1992) Job shop scheduling by simulated annealing. Operat Res 40(1):113–125

    Article  MATH  Google Scholar 

  • Venk S (1990) Strategic optimization cycle as a competitive tool for economic justification of advanced manufacturing systems. J Manuf Syst 9:194–205

    Google Scholar 

  • Veeramani D, Uptom DM, Barash MM (1992) Cutting tool management in computer integrated manufacturing. Intl J Flex Manuf Syst 3(3–4):237–265

    Article  Google Scholar 

  • Vineyard M, Gyampah KA, Meredith JP (1999) Failure rate distribution for flexible manufacturing systems: an empirical study. Euro J Operat Res 116(1):139–155

    Article  MATH  Google Scholar 

  • Vis IFA (2006) Survey of research in the design and control of automated guided vehicle systems. Euro J Operat Res 170(3):677–709

    Article  MATH  Google Scholar 

  • Yu H, Reyes A, Lang S, Lloyd S (2003) Combined Petri net modeling and AI based heuristic hybrid search for flexible manufacturing system—part I Petri net modeling and heuristic search. Intl J Comput Ind Eng 44:527–543

    Article  Google Scholar 

  • Weintraub A, Cormier D, Hodgson T, King R, Wilson J, Zozom A (1999) Scheduling with alternatives: A link between process planning and scheduling. IIE Trans 31(11):1093–1102

    Article  Google Scholar 

  • Widmer M (1991) Job shop scheduling with tool constraints: a Tabu search approach. J Operat Res Soc 42(1):75–82

    Google Scholar 

  • Zahir MS (1991) Incorporating the uncertainty of decision judgments in analytical hierarchy process. Euro J Operat Res 53(2):206–216

    Article  MATH  Google Scholar 

  • Zhao C, Wu Z (2001) A genetic algorithm approach to the scheduling of FMS with multiple routes. Intl J Flex Manuf Syst 13(1):71–88

    Article  Google Scholar 

  • Zofaghari S, Liang M (1999) Jointly solving the group scheduling and machine speed selection problem: a hybrid Tabu simulated and simulated annealing approach. Intl J Product Res 37(10):2377–2397

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tilak Raj.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raj, T., Shankar, R. & Suhaib, M. A review of some issues and identification of some barriers in the implementation of FMS. Int J Flex Manuf Syst 19, 1–40 (2007). https://doi.org/10.1007/s10696-007-9015-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10696-007-9015-7

Keywords

Navigation