Skip to main content
Log in

Hydrothermal from — Geology to Nanotechnology and Nanogeoscience (Part — II)

  • Original Article
  • Published:
Journal of the Geological Society of India

Abstract

Hydrothermal process from a pure geologic science has now become one of the fast-emerging processing technologies to synthesize nanomaterials in the laboratory. Today it is an advanced technological tool, which facilitates to obtain nanomaterials and nanoparticles with desired size, shape, quality and functionality. In fact, hydrothermal technique has its bearing on the nature-inspired or geo-mimetic processes that are being employed extensively in the laboratory. The natural hydrothermal processes are acting ever since earth came into existence, and leading to the formation of a large variety of minerals, rocks and ores. Earth is a blue planet of the universe, where water is a major component which plays an important role in the formation of geological materials and hydrothermal circulation has always assisted by bacteria, photochemical and other related activities. The synthesis of advanced technological materials often occurs in the presence of biomolecules, proteins, organic ligands, DNA and amino acids. An understanding of nanogeoscience is becoming very relevant in the current context and is crossing into almost all the branches of geology including palaeoecology, mineralogy, environmental geology, energy geology, geochemistry, etc. Similarly, the hydrothermal processes in nature cover several branches of geology whether it is the origin of ores, minerals, rocks, but also life on the earth. In the present review, the authors discuss all the above aspects in detail with a future perspective of the field. Also, the authors have described the evolution of hydrothermal process from pure geology to the nanotechnology, nanogeoscience, nano-geopolymers, etc., with specific examples and depicted its relevance to the geologic science.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbott, D.H. and Hoffman, S.E. (1984) Archean Plato Tectonics Revisited 1. Heat Flow, Spreading Rate and Age of Subducting Oceanic Lithosphere and their Effects on the Origin and Evolution of Continents, Tectonics, v.3, pp.429–448.

    Google Scholar 

  • Aoki, H. (1991) Science and Medical Applications of Hydroxyapatite, Tokyo, Japan. Japanese Assoc. Apatite Sci., Japan.

    Google Scholar 

  • Baross, J.A. and Hoffman, S.E. (1985) Submarine hydrothermal vents and associated gradient environments as sites for the origin and evolution of life. Origins of Life & Evolution of the Biosphere, v.15, pp.327–345.

    Article  Google Scholar 

  • Banfield, J.F. and Zhang, H.Z. (2001) Nanoparticles in the environment. In: Banfield, J.F., Navrotsky, A. (Eds.)., Nanoparticles and the Environment. Rev. Mineral. Geochem., v.44, pp.1–58.

  • Basavalingu, B., Moreno, J.M.C., Byrappa, K., and Gogotsi, Y.G., (2001) Decomposition of silicon carbide in the presence of organic compounds under hydrothermal conditions. Carbon, v.39, pp.1763–1767.

    Article  Google Scholar 

  • Bell III, J.F., McSween Jr. H.Y., Crisp, J.A., et al., (2000) Mineralogic and compositional properties of Martian soil and dust: Results from Mars Pathfinder. Jour. Geophys. Res., v.105, pp1721–1755.

    Article  Google Scholar 

  • Berkeley, C.A. (2002) Report of the Nanogeoscience Workshop. June 14–16, p.10. National Science Foundation, USA.

    Google Scholar 

  • Blackburn, J.M., Long, D.P., Cabanas, A. and Watkins, J.J. (2001) Deposition of conformal copper and nickel films from supercritical carbon dioxide. Science, v.294, pp.141–145.

    Article  Google Scholar 

  • Busek, P.R., Tsipursky, S.J. and Hettich, R. (1992) Fullerenes from the geological environment. Science, v.257, pp.215–217.

    Article  Google Scholar 

  • Busek, P.R. (2002) Geological Fullerenes: Review and Analysis. Earth Planet. Sci. Lett., v.203, pp.781–792.

    Article  Google Scholar 

  • Byrappa, K. (2009) Novel hydrothermal solution routes of advanced high melting nanomaterials processing, Jour. Cer. Soc. Japan, v.117, pp.236–244.

    Google Scholar 

  • Byrappa, K. and Yoshimura, M. (2013) Handbook of Hydrothermal Technology — A Technology for Crystal Growth and Materials Processing, 2nd Edition: Elsevier Science Publishers, London, UK.

    Google Scholar 

  • Chen, L., Bazylinski, D.A., and Lower, B.H., (2012) Microbially synthesized of biomagnetic nanomaterails, Nature Education Knowledge v.3, pp. 30–35.

    Google Scholar 

  • Chen, F.W., Lu, S.F., Ding, X., Zhao, H.Q., and Ju, Y.W., (2019) Total porosity measured for shale gas reservoir samples: A case from the lower silurian Longmaxi formation in southeast Chongqing, China. Minerals, v.9–5, pp.1–12.

    Google Scholar 

  • Cruz, D.M., Mostafavi, E., Vernet-Crua, A., Barabadi, H., Shah, V., Díaz, J.L.C., Guisbiers, G., and Webster, T.J., (2020) Green nanotechnology-based zinc oxide (ZnO) nanomaterials for biomedical applications: a review, J. Phys. Mater. v.3, 034005 https://doi.org/10.1088/2515-7639/ab8186

    Article  Google Scholar 

  • Dai, H., Hafner, J.H., Rinzler, A.G., Colbert, D.T., and Smalley, R.E., (1996) Nature v.384, pp.147–151.

    Article  Google Scholar 

  • Dai, Z.R., Bradley, J.P., Joswiak, D.J., et al., (2002) Possible in situ formation of meteoritic nanodiamonds in the early solar System, Nature, v.418, pp.157–159.

    Article  Google Scholar 

  • Darmonin, T. and Guittard, F. (2015) Superhydrophobic and superoleophobic properties in nature. Materials Today, v.18, pp.273.

    Article  Google Scholar 

  • Davidovtis, J. (1988) Proc.1st European Conf. of Soft Mineralogy “Geopolymers”, v.88, Compiegne.

  • Dayman, J. (1858) Deep sea soundings in the North Atlantic ocean between Ireland and Newfoundland, made in HMS Cyclops —London, Eyre and Spottiswoode.

  • Dhami, N.K., Sudhakara Reddy, M., and Mukherjee, A. (2013) Biomineralization of calcium carbonates and their engineered applications: a review. Front. Microbiol., v.4, pp.1–13, Article 314.

    Article  Google Scholar 

  • Doan, M.V., Cheng, F., Dyirakumunda, T., Elsegood, M.R.J., Chin, J., Rowe, O., Redshaw, C., and Ting, V.P. (2020) Using supercritical CO2 in the preparation of metal-organic frameworks: Investigating effects on crystallization, Crystals, v.10, pp.17–44.

    Article  Google Scholar 

  • Dunn, P.J., (1979) Light green zincite from Sterling hill, Ogdensburg, New Jersey. Mineral. Record, v.10, pp.45–46.

    Google Scholar 

  • Ehrenberg, C.G. (1836) Bemerkungen uberfeste mikroskopischean organische Formen in den erdigen und derben Mineralien — Ab handlungen der koniglich preussichen Akademie der Wissenschaften Berlin, Germany, pp.84–85.

  • Ehrenberg, C.G. (1840), Uber die bildungen der kreidefelsen und kreidemergals dur chunsicht bare organismen- Abhandlungen der koniglich preussischen Akademic der Wissenschaften Berlin, pp.59–147.

  • Ehrenberg, C.G. (1854) Mikrogeologie. Das Erden und Felsen schaffen de wirken des unsicht barkleinenselb steandigen lebens auf Erden, v.375, p.88 Leipzig, Germany.

    Google Scholar 

  • Frank, S., Poncharal, P., Wang, Z.I., and De Heer, W.A. (1998) Science, v.280, pp.1744–1748.

    Article  Google Scholar 

  • Fornari, D.J. and Embley, R.W. (1995) Tectonic and Volcanic controls on hydrothermal processes at the Mid — Ocean ridge: An overview based on near-bottom and submersible studies. In: Humphris, S.E., Zierenberg, R.A., Mullineause, L.S., and Thomson, R.E. (Eds.), Seafloor Hydrothermal Systems, Physical, Chemical, Biological and Geological Interactions, pp,1–46.

  • Gohari, G., Mohammadi, A., Simapanahirad, A.A., Dadpour, M.R., Fotopoulos, V., and Kimura, S. (2020) Titanium dioxide nanoparticles (TiO2 nps) promote growth and ameliorate salinity stress effects on essential oil profile and biochemical attributes of dracocephalum moldavica. Sci. Reports, v.10, pp.912–918.

    Google Scholar 

  • Green II, H.W., and Burnley, P.C. (1989) Deep-focus earthquake analogs recorded at high pressure and temperature in the laboratory. Nature, v.341, pp.733–736.

    Google Scholar 

  • Hanley, D., Gillings, A. (Ed.), (1996) Evolution of hydrothermal ecosystems on Earth and Mars. Bio Essays, v.18, pp.515–517.

    Google Scholar 

  • Hein, J., Mizell, K., Koschinsky, A., and Conrad, T. (2013). Deep-ocean mineral deposits as a source of critical metals for high- and green-technology applications: comparison with land-based resources. Ore Geol. Rev. v.51, pp.1–14.

    Article  Google Scholar 

  • Hermann, E., Kunze, C., Gatzweiler, R., Kiebig, G., and Davitovits, J., (1999) In: Proc. Geopolymers, pp.211–220.

  • Herrle, J.O. (2003) Reconstructing nutricline dynamics of mid-Creta- ceous oceans: Evidence from calcareous nannofossils from the NiveauPaquier black shale (SE France). — Marine Micropaleont., v.47, pp.307–321.

    Article  Google Scholar 

  • Hezam, A., Namratha, K., Drmosh, Q.A., Chandrashekar, B.N., Sadasivuni, K.K., Yamani, Z.H., Cheng, V., and Byrappa K. (2017) Heterogeneous growth mechanism of ZnO nanostructures and the effects of their morphology on optical and photocatalytic properties, Cryst. Engg. Comm, DOI: https://doi.org/10.1039/c7ce00609h

  • Hochella, Jr. M.F., Moore, J.N., Putnis, C.V., Putnis, A., Kasama, T., and Eberyl, D.D. (2005a) Direct observation of heavy metal-mineral association from the Clark Fork River superfund complex: Implications for metal transport and bioavailability. Geochim. Cosmochim. Acta, v.69, pp.1651–1663.

    Article  Google Scholar 

  • Hochella, Jr. M.F., Lower, S.K., Maurice, P.A., Penn, R.L., Sahai, N., Sparks, D.L., Twining, B.S. (2008) Nanominerals, Mineral Nanoparticles, and Earth Systems. Science, v.319(5870), pp.1631–1635. doi:https://doi.org/10.1126/science.1141134

    Article  Google Scholar 

  • Hochella, Jr. M.F., (Guest Editor) (2008) Nanogeoscience: Special Edition of Elements, v.4(6), pp.373–412.

    Google Scholar 

  • Hughbanks, T., (1995) Exploring the metal-rich chemistry of the early transition elements, J. Alloys Compounds, v.229, pp.40–53.

    Article  Google Scholar 

  • International Mineralogical Association: Commission on Mineral Data Base (1958) Dec. 2020.

  • Jia, A., Hu, D., He, S., Guo, X, Hou, Y., Wang, T., et al., (2020) Variations of pore structure in organic-rich shales with different lithofacies from the Jiangdong Block, Fuling Shale Gas Field, SW China: Insights into gas storage and pure evolution. Energy Fuels, v.34, pp.12457–12475.

    Article  Google Scholar 

  • Jiang, S., Lin, K. and Cai, M. (2020) ZnO Nanomaterials: current advancements in antibacterial mechanisms and Aaplications, Chem., v.21. doi: https://doi.org/10.3389/fchem.2020.00580

  • Joussein, E., Petit, S., Churchman, J., Theng, B., Righi, D., and Delvaux, B., (2005) Halloysite Clay Minerals: A Review. Clay Minerals, v.40, pp.383–426.

    Article  Google Scholar 

  • Ju Y., Wan Q., and Hochella, M.F. Jr. (2020) Editorial for Special Issue “Nanomineralogy”. Minerals, v.10, No.6, pp.520–526.

    Article  Google Scholar 

  • Kameo, K., Kubota, Y., Haneda, Y., Suganuma, Y., and Okada, M., (2020) Calcareous nannofossil biostratigraphy of the lower- middle pleistocence boundary of the GSSp, Chiba composite section in the kokumoto Formation, Kazusa Group, Central Japan and implications for sea-surface environmental changes. Prog. in Earth & Planet. Sci. v.7, pp.36–43.

    Article  Google Scholar 

  • Keerthana, D.S., Namratha, K., Byrappa, K., and Yathirajan, H.S., (2015) Facile one-step fabrication of magnetite particles under mild hydrothermal conditions. Jour. Magnetism & Magnetic Materials, v.378, pp.551–557.

    Article  Google Scholar 

  • Komnitsas, K., and Zaharaki, D., (2007) Geopolymerisation: A review and prospects for the minerals industry, Minerals Engg., v.20, pp.1261–1277.

    Article  Google Scholar 

  • Kvasnytsya, V.M., and Wirth, R. (2009) Nanoinclusions in microdiamonds from Neogenic sands of the Ukraine (Samotkan’ placer): A TEM study. Lithos, v.113, pp.454–464.

    Article  Google Scholar 

  • Li, Z., Liang, Z.K., Jiang, Z.X., Yu, H.L., Yang, Y.D., and Xiao, L., (2019) Pore connectivity characterization of lacustrine shales in Changling fault depression, Songliao Basin, China: Insights into mineral compositions on connected pores. Minerals, v.9, pp.198–2004.

    Article  Google Scholar 

  • Liu, Y., Xu, Y., Li, J.P., Zheng, B., Wu, D. and Sun, Y.H. (2006) Mater. Res. Bull., v.99, pp.41–47.

    Google Scholar 

  • Lower, S.K., Tadanier, C.J. and Hochella, M.F. (2000) Measuring interfacial and adhesion forces between bacterial and mineral surfaces with biological force microscopy. Geochim. Cosmochim. Acta, v.64, pp.3133–3139.

    Article  Google Scholar 

  • Lower, S.K., Tadanier, C.J. and Hochella, M.F. (2001) Dynamics of the mineral — microbe interface: use of biological force microscope in biogeochemistry and geomicrobiology. Geomicrobiol. Jour., v.18, pp.63–76.

    Article  Google Scholar 

  • Malini, S., Nagaiah, N., Paramesh, L., and Venkataramaiah, P., (1995) Study of the distribution of trace elements in soils in and around Mysore city, Karnataka. Environ. Geol., v.26, pp.107–110.

    Article  Google Scholar 

  • Mann, S., (ed.) (1996) Biomimetic Materials Chemistry. Wiley—VCH, Germany.

    Google Scholar 

  • McLeod, M.C., Gale, W.F. and Roberts, C.B. (2004) Metallic nanoparticles production utilizing a supercritical carbon dioxide flow process. Langmuir v.20, pp.7078–7082.

    Article  Google Scholar 

  • Melton, C.E. and Giardini, A.A. (1974) The composition and significance of gas released from natural diamonds from Africa and Brazil. Amer. Mineral. v.59, pp.775–782.

    Google Scholar 

  • Misra, K.S., Hammond, M.R., Phadke, A.V., Plows, F., Reddy, U.S.N., Reddy, I.V., Fareeduddin, Parthasarathy, G., Rao, C.R.M., Gohain, B.N. and Gupta, D. (2007) Occurrence of fullerene bearing shungite suite rock in Mangampeta area, Cuddapah district, Andhra Pradesh. Jour. Geol. Soc. India, v.69(1), pp.25–28.

    Google Scholar 

  • Mustapha, S., Ndamitso, M.M., Abdulkareem, A.S., Tijani, J.O., Shuaib, D.T., Ajala, A.O. and Mohammed, A.K. (2020) Application of TiO2 and ZnO nanoparticles immobilized on clay in wastewater treatment: a review. Appl. Water Sci., v.10, pp.49–56.

    Article  Google Scholar 

  • Mutterlose, J. (1987) Calcareous nannofossils and belemnites as warmwater indicators from the NW-German Middle Aptian. — Geologisches Jahrbuch (A), v.96, pp.293–313.

    Google Scholar 

  • Namratha, K. and Byrappa, K. (2012) Novel solution routes of synthesis of metal oxide and hybrid metal oxide nanocrystals. Prog. Cryst. Growth. Charat. Mater., v.58, pp.14–42.

    Article  Google Scholar 

  • Namratha, K., Nayan, M.B., Darshan, M.S., Basavrajappa, H.T., Madesh, P. and Byrappa, K. (2022) Hydrothermal from- Geology to Nanotechnology (Part 1). Jour. Geol. Soc. India, v.98, pp.353–362.

    Article  Google Scholar 

  • Novikov, A.P., Kalmykov, S.N., Utsunomiya, S., Ewing, R.C., Horreard, F., Merkulov, A., Clark, S.B., Tkachev, V.V., Myasoedov, A., Clark, S.B., Tkachev, V.V., and Myasoedov, B.F. (2006) Colloid transport of plutonium in the far —field of the Mayak production Association, Russia, Science, v.314, pp.638–641.

    Article  Google Scholar 

  • O’Regan, M., Backman, J., Fornaciari, E., Jakabsson, M. and West, G. (2020) Calcareous nannofossils anchor chronologies for Arctic ocean sediments back to 500 ka. Geol. Soc. Amer., Geol., v.48, pp.1115–1119.

    Google Scholar 

  • Parthasarathy, G., Srinivasan, R., Vairamani, M., Ravikumar, K., and Kunwar, A.C. (1998) Occurrence of natural fullerenes in low grade metamorphosed Proterozoic shungite from Karelia, Russia, Geochim. Cosmochim. Acta, v.62(21/22), pp.3541–3544.

    Article  Google Scholar 

  • Parthasarathy, G., Choudary, B.M., Sreedhar, B., Kunwar, A.C. and Srinivasan, R. (2003) Ferrous saponite from the Deccan Trap, India, and its application in adsorption and reduction of hexavalent chromium, Amer. Miner., v.88(11–12), pp.1983–1988.

    Article  Google Scholar 

  • Parthasarathy, Bhandari, N., Vairamani, M., and Kunwar, A.C., (2008) High-pressure phase of natural fullerene C60 in iridium-rich Cretaceous-Tertiary boundary layers of Deccan intertrappean deposits, Anjar, Kutch, India, Geochim. Cosmochim. Acta, v.72, pp.978–987.

    Article  Google Scholar 

  • Parthasarathy, G. (2011) Electrical properties of natural and synthetic nanocrystalline MgTiO3 geikielite at mantle pressure and temperature conditions. Amer. Mineral., v.96, pp.860–863.

    Article  Google Scholar 

  • Parthasarathy, G., and Sreedhar, B., (2011) Pressure dependence of the electrical resistivity of natural cassiterite SnO2 and of undoped and Co-doped nanocrystalline SnO2. Philosophical Mag. Lett., v.91(3), pp.200–206.

    Article  Google Scholar 

  • Parthasarathy, G. and Sreedhar, B. (2011) Researches in Nanogeoscience and their relevance to the Planetary Shallow Subsurface Science, Nano Digest, v.1(4), pp.14–17.

    Google Scholar 

  • Parvin, T., Namratha, K., Ibrahim, I.A., Phanichphant, S., and Byrappa, K., (2012) Photocatalytic degradation of municipal wastewater and brilliant bluedye using hydrothermally synthesized surface-modified silver-doped ZnO designer particles, Int. Jour. Photoenergy, v.2012, doi:https://doi.org/10.1155/2012/670610

  • Pasang, T., Namratha, K., Parvin, T., Ranganathaiah, C., and Byrappa, K., (2015) Tuning of band gap in TiO2 and ZnO nanoparticles by selective doping for photocatalytic applications. Materials Res. Innovat., v.19, pp.73–80.

    Article  Google Scholar 

  • Posfai, M., Lefevre, C.T., Trubitsyn, D., Bazylinski, D.A., and Frankel, R.B., (2013) Phylogenetic significance of composition and crystal morphology of magnetosome minerals. Frontiers in Microbiology, v.4, pp.1–15.

    Article  Google Scholar 

  • Rawlings, D.E., Dew, D., and du Plessis, C., (2003) Biomineralization of metal-containing ores and concentrates. Trends in Biotech., v.21(1), pp.38–44.

    Article  Google Scholar 

  • Reichel, S., Aubel, T., Patzig, A., Janneck, E. and Martin, M. (2017) Lithium recovery from lithium-containing micas using sulfur oxidizing microorganisms, Minerals Engg., v.106, pp.18–21.

    Article  Google Scholar 

  • Reverchon, E. and Adami, R. (2006) Nanomaterials and supercritical fluids, J. Supercrit. Fluid. v.37, pp.1–22.

    Article  Google Scholar 

  • Rezza, I., Salinas, E., Calvente, V., Benuzzi, D., and Sanz de Tosetti, M.I., (1997) Extraction of lithium from spodumene by bioleaching. Lett. Appl. Microbio., v.25, pp.172–176.j

    Article  Google Scholar 

  • Richards, G., (1986) Aluminium oxide ceramics, In: Bever, M.B. (Ed.), Encyclopedia of materials science and engineering, v.1, (Pergamon press/The MIT press, Cambridge, M.A.), pp.158–162

    Google Scholar 

  • Riman, R.E., Suchanek, W.L., Byrappa, K., Chen, C.W., Shuk, P. and Oakes, C.S. (2002) Synthesis of hydroxyapatite designer particulates Solid State Ionics, v.151, pp.393–402.

    Article  Google Scholar 

  • Roth, P.H., (1981) Mid Cretaceous calcareous nannoplankton from the Central Pacific: Implications for paleoceanography. In: Thiede, J.; Vallier, T.L. et al., (Eds.), Initial Report Deep Sea Drilling Project 62:471–489, Washington D.C. (US Government Printing Office).

  • Saikia, B.J., Parthasarathy, G. and Borah, R.R. (2017) Nanodiamonds and silicate minerals in ordinary chondrites as determined by micro-Raman spectroscopy. Meteorit. Planet. Sci., v.52(6), pp.1146–1154.

    Article  Google Scholar 

  • Schindler, M., and Hochella, Jr. M.F., (2015) Soil memory in mineral surface coatings: Environmental processes recorded at the nanoscale. Geology, v.43, pp.415–418.

    Article  Google Scholar 

  • Schur, M., Rijinberk, H., Nather, C. and Bensch, W. (1998) Cr(en)2SbS3: the first example of a single SbS3 ligand in a transition-metal-complex, and the crystal structure of Cr(en)3SbS4. Polyhedron, v.18, pp.101–107.

    Article  Google Scholar 

  • Shahmoradi, B., Maleki, A., Byrappa, K., (2015) Removal of disperse Orange-25 using in situ surface modified iron doped TiO2 nanoparticles. In: Desalination and Water Treatment, v.53, pp.3615–3612.

  • Shock, E.L. (1992) Chemical Environmentals of submarine hydrothermal systems. Origins of Life and Evolution of the Biosphere, v.22, pp.67–107.

    Article  Google Scholar 

  • Shivaraju, H.P., Sajan, C.P., Rungnapa, T., Vijaykumar, M.S., Ranganathaiah, C. and Byrappa, K. (2010) Hydrothermal coating of ZnO onto calcium alumino-silicate beads and their application in photodegradation of amaranth dye. Mater. Res. Innov., v.14. pp.80–86.

    Article  Google Scholar 

  • Skvara, F., (2007) Alkali activated materials or geopolymers? Ceramics—Silikaty, v.51, pp.173–177.

    Google Scholar 

  • Somiya, S., (Ed.) (1982) Proc. 1st International Symposium on Hydrothermal Reactions, Gakujutsu Bunken Fukyu-Kai, March 22–26, Japan.

  • Sreedhar, B., Arundhathi, R., Amarnath Reddy, M. and Parthasarathy, G. (2009) Highly efficient heterogenous catalyst for acylation of alcohols and amines using natural ferrous chamosite. Appl. Clay Sci., v.43, pp.425–434.

    Article  Google Scholar 

  • Sreedhar, B., Satya Vani, C.H., Keerthi Devi., and Parthasarathy, G. (2011) Biomineralization and growth mechanism of morphologically controlled strontium carbonate. Mineral. Magz., v.75, p.1925.

    Google Scholar 

  • Srinath, B.S., Namratha, K. and Byrappa, K. (2018) Green synthesis of biocompatible gold nanoparticles from gold mine bacteria bacillus oceanisediminis and their antileukemic activity. Internat. Jour. Pharm. & Bio. Sci. IJPBS, v.8, pp.169–177.

    Google Scholar 

  • Srivastava, V., Gusain, D., and Sharma, Y.C., (2013) Synthesis, characterization and application of zinc oxide nanoparticles (n-ZnO) Ceramics Internat., v.39, pp.9803–9808.

    Article  Google Scholar 

  • Suchanek, W.L., and Yoshimura, M., (1998) Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants. Jour. Mater. Res, v.13, pp.94–117.

    Article  Google Scholar 

  • Suchanek, W.L., Byrappa, K., Shuk, P., Riman, R.E., Janas, V.F. and TenHuisen, K.S. (2004) Preparation of magnesium-substituted hydroxyapatite powders by the mechanochemical-hydrothermal method, v.25(19), 4647. doi,https://doi.org/10.1016/j.biomaterials.2003.12.008.

    Google Scholar 

  • Taniguchi, N., (1974) On the basic concept of nanotechnology, Proc. Intl.Conf. Prod. Eng. Tokyo, Part-II. Japan Society of Precision Engineering.

  • Tao, Y. and Pescarmona, P.P. (2018) Nanostructured oxides synthesized via scCO2 — assisted sol-gel methods and their application in catalysis. Catalysts, v.8, pp.212–239.

    Article  Google Scholar 

  • Ustinova, M.A. (2017) New data on the distribution of calcareous nannofossils in the upper Jurassic Loino Section (Kirov Region, Russia). Palaeontological Jour., v.51, pp.95–106.

    Article  Google Scholar 

  • Vergaro, V., Abduulayev, E., Lvov, Yu.M., Zeitoum, A., Cingolani, R., Rinaldi, R. and Leporatti, S. (2010) Cytocompatibility and uptake of Halloysite clay nanotubes, Biomacromolecules, v.11, pp.820–826.

    Article  Google Scholar 

  • Wallich, G.C. (1861) Remarks on some novel phases of organic life, and on the boring powers of minuter annelids, at great depths in the sea. Annals and Magazine of Natural History, v.3, pp.52–58.

    Article  Google Scholar 

  • Waychunas, G.A., Kim, C.S. and Banfield, J.F. (2005) Nanoparticulate iron oxide minerals in soils and sediments: unique properties and contaminant scavenging mechanism. Jour. Nanopart. Res, v.7, pp.409–433.

    Article  Google Scholar 

  • Wan, J., Chen, X., Wang, Z., Yang, X. and Qian, Y.T. (2005) A soft-template-assisted hydrothermal approach to single-crystal Fe3O4 nanorods. Jour. Cryst. Growth, v.276, pp.571–579.

    Article  Google Scholar 

  • Whitman, W.B., Coleman, D.C. and Wiebe, W.J. (1998) Prokaryotes: The unseen majority. Proc. Natl. Acad. Sci., V.95, pp.6578–6583.

    Article  Google Scholar 

  • Williams, J.R., and Bralower, T.J. (1995) Nannofossil assemblages, fine fraction stable isotopes, and the paleo-oceanography of the Valanginian-Barremian (Early Cretaceous) North Sea Basin. Paleo- oceanography, v.10, pp.815–839.

    Google Scholar 

  • Xia, D., Yang, Z., Gao, T., Li, H. and Lin W. (2021) Characteristics of micro-and nano-pores in shale oil reservoirs. Jour. Petrol. Explor. Prod. Tech., v.11, pp.157–169.

    Article  Google Scholar 

  • Yoshimura, M., and Byrappa, K., (2008) Hydrothermal Technology Past, Present and Future. Jour. Mater. Sci., v.43, pp.2085–2103

    Article  Google Scholar 

  • Zaczek, K., Troll, V.R., Cachao, M., Ferreira, J., Deegan, F.M., Carracedo, J.C., Soler, V., Meade, F.C., and Burchardt, S. (2011) Nannofossils in El Hierroeruotive products reinsate plume model for Canary Island. Scienf. Reports, v.5, pp.7945–7952. doi:https://doi.org/10.1038/srep07945

    Article  Google Scholar 

  • Zare, M., Namratha, K., Byrappa, K., Surendra, D.M., Yallappa, S., and Basavaraj, H. (2018) Surfactant assisted solvothermal synthesis of ZnO nanoparticles and study of their antimicrobial and antioxidant properties. Jour. Mater. Sci. Tech., v.34, pp.1035–1043.

    Article  Google Scholar 

  • Zdinsk, L.R., and Vidholdov, Z., (2018) Biological resistance and application properties of particle boards containing nano-zinc oxide, Hindawi Advances in Materials Science and Engineering Volume, Article ID 2680121, pp.1–8. doi:https://doi.org/10.1155/2018/2680121

  • Zhang, W., Ma, D., Liu, J., Kong, L., Yu, W., and Quain, Y., (2004) Solvothermal synthesis of carbon nanotubes by metal oxide and ethanol at mild temperature. Carbon, v.42, pp.2143–2341.

    Article  Google Scholar 

  • Zhang, Y.C., Wang, G.Y., Hu, X.Y., Shi, Q.F., Qiao, T., and Yang, Y., (2005) Phase controlled synthesis of ZnS nanocrystallites by mild solvothermal decomposition of an air-stable single-source molecular precursor. Jour. Cryst. Growth., v.284, pp.554–560.

    Article  Google Scholar 

  • Zhang, X., Heinonen, S., and Levanen, E., (2014) Applications of supercritical carbon dioxide in materials processing and synthesis. RSC Adv., v.4, pp.61137–61152.

    Article  Google Scholar 

  • Zhang, B.M., Han, Z.X., Wang, X.Q., Liu, H.L., Wu, H., and Feng, H., (2019) Metal-bearing nanopartilces observed in soils and fault gouges over the Shenjiayao gold deposit and their significance. Minerals, v.9, pp.214–220.

    Article  Google Scholar 

  • Zhang, H.Z. and Banfield, J.F. (2000) Understanding Polymorphic Phase Transformation Behavior during Growth of Nanocrystalline Aggregates: Insights from TiO2, Jour. Physical Chemistry B, v.104, pp.3481–3487.

    Article  Google Scholar 

  • Zheng, Y., Cheng, Y., Wang, Y., and Bao, F., (2005) Synthesis of shape evolution of α-Fe2O3 nanophase through two-step oriented aggregation in solvothermal system. Jour. Crystal Growth, v.284, p.221–225.

    Article  Google Scholar 

  • Zhu, H.J., Ju, Y.W., Huang, C., Qi, Y., Ju, L.T., Yu, K., Li, W.W., Su, X., Feng, H.Y. and Qiao, P. (2019) Tectonic and thermal controls on the nano-micro structural characteristic in a Cambrian organic-rich shale. Minerals, v.9, pp.354–360.

    Article  Google Scholar 

  • Ziental, D., Goslinska, B.C., Mlynarczyk, D.T., Sobotta, A.G., Stanisz, B., Goslinski, T. and Sobotta, L. (2020) Titanium dioxide nano-particles: prospects and applications in medicine, Nanomaterials, v.10, pp.387–394.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Byrappa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Namratha, K., Nayan, M.B., Pandareesh, M.D. et al. Hydrothermal from — Geology to Nanotechnology and Nanogeoscience (Part — II). J Geol Soc India 98, 1708–1720 (2022). https://doi.org/10.1007/s12594-022-2241-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-022-2241-5

Navigation