Skip to main content
Log in

Mineral Chemistry and Geothermometry of Biotite in the Granitoids, Located in and around Jirang-Patharkhamah Area, Ri-Bhoi District, Meghalaya, India

  • Original Article
  • Published:
Journal of the Geological Society of India

Abstract

Granitoids are well exposed in Jirang-Patharkhamah area (latitude N 25°57′− 25°41′ and longitude E 91°30′–91°38′). The area lies mostly in Ri-Bhoidistrict and is also extended to West Khasi Hills district of Meghalaya. The granitoids are medium grained and nonporphyritic. The colour is dominantly grey although some granitoids are pink in colour. The common minerals in order of abundance are quartz, plagioclase, K-feldspar, biotite and hornblende. Secondary minerals are sericite, chlorite, muscovite, secondary hornblende and secondary biotite. Among accessory minerals, sphene, zircon, apatite, calcite, zoisite, magnetite and monazite are significant. The intergrowth textures such as perthite, myrmekite in these rocks indicate that the rocks were affected by low temperature alteration. The representative samples ploy in the field of granite in various geochemical discrimination diagrams. The aim of the present paper is geochemical characterisation of the granitoids using major and trace elements (including REE). The whole rock geochemistry reveals that the granitoid is I-type, calc-alkaline, metaluminous to weakly peraluminous and an attempt is made to examine the nature of the magma based on biotite mineral chemistry. The biotite chemistry indicates that the granitoid is I-type and calc-alkaline. The paper also aims to estimate temperature of emplacement of granitoids based on two feldspar geothermometer and Ti-in biotite geothermometer. The temperature calculated from two feldspar thermometry is in the range 512–602°C and the average is 550°C. The temperature calculated by Ti-in biotite thermometer is in the range 623 to 656°C and the average is 645°C. Geothermometric results plays an important role in definition of petrogenetic history and regional tectonism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdel-Rahman, A. (1994) Nature of biotites from Alkaline, calc-alkaline, and peraluminous magmas. Jour.Petrol., v.35(2), pp.525–541.

    Article  Google Scholar 

  • Abrecht, J. and Hewitt, D.A. (1988) Experimental evidence on the substitution of Ti in biotite. Amer. Mineral., v.73, pp.1275–1284.

    Google Scholar 

  • Ague, J.J., Brimhall, G.H. (1988) Regional variations in bulk chemistry, mineralogy, and compositions of mafic and accessory minerals in batholiths of California. Geol. Soc. Amer., v.100(6), pp.891–911.

    Article  Google Scholar 

  • Albuquerque, C.A. (1973) Geochemistry of biotites form granitic rocks, Northern Portugal. Geochim. Cosmochim. Acta, v.37, pp.1779–1802.

    Article  Google Scholar 

  • Anderson, J.L., Barth, A.P, Young, E.D. (1988) Mid-crustal Creteceous roots of Cordilleran metamorphic core complexes. Geology, v.16(4), pp.366–369.

    Article  Google Scholar 

  • Anderson, J.L., Barth, A.P., Wooden, J.L., Mazab, F. (2008) Thermometers and Thermobarometers in Granitic Systems. Rev. Mineral. Geochem., v.69(1), pp.121–142.

    Article  Google Scholar 

  • Arima, M. and Edgar, A.D. (1981) Substitution mechanisms and solubility of titanium in phlogopites from rocks of probable mantle origin. Contrib. Mineral. Petrol., v.77, pp.288–295.

    Article  Google Scholar 

  • Arth, J.G. (1979) Some trace elements in Trondhjemite-their implications to magma genesis and paleotectonic setting. In: F. Barker (Ed.), Trondhjemites, Dacites and Related rocks.: Amsterdam, Elsevier Scientific Publishing Co., pp.1–12.

    Google Scholar 

  • Barbarin, B. (1999) A review of relationships between granitoid types, their origins and their geodynamic environments. Lithos, v.46, pp.605–626.

    Article  Google Scholar 

  • Barth, T.F.W. (1934) Polymorphic phenomena and crystal structure. Amer. Jour. Sci., v.5, pp.273.

    Article  Google Scholar 

  • Barth, T.F.W. (1951) The feldspar geological thermometers. Neues Jahrb. Mineral, v.82, pp.143–154.

    Google Scholar 

  • Bhagabaty, B. and Mazumdar, A.C. (2008) Petrology of granulites from Shillong Plateau in West Garo Hills district, Meghalaya, India. Jour. Nepal Geol. Soc., v.37, pp.1–10.

    Google Scholar 

  • Bhagabaty, B., Mazumdar, A.C. and Borah, P. (2017) Geochemical characteristics of Tukureswari and Barbhita Granitoids in Goalpara District, Assam. Jour. Geol. Soc. India, v.89, pp.532–540.

    Article  Google Scholar 

  • Bidyanand, M. and Deomurari, M.P. (2007) Geochronological constraints on the evidence of Meghalaya massif, northeastern India: an ion microprobe study. Curr. Sci., v.93(11), pp.1620–1623.

    Google Scholar 

  • Buddington, A.F., Lindsley, D.H. (1964) Iron-titanium oxide minerals and synthetic equivalents. Jour. Petrol., v.5, pp.310–357.

    Article  Google Scholar 

  • Burkhand, D.J.M. (1993) Biotite crystallisation temperature and redox states in granitic rocks as indicator for tectonic setting. Geol. Mijnbouw, v.71, pp.337–349.

    Google Scholar 

  • Chappell, B.W. and White, A.J.R. (1974) Two contrasting granite types. Pacific Geol., v.8, pp.173–174.

    Google Scholar 

  • Chattejee, N., Mazumdar, A.C., Bhattacharya, A. and Siakia, R.R. (2002) Neoproterozoic highly fractionated I-type granitoids of Shillong Plateau, Meghalaya, Northeast India: geochemical constraints on their petrogenesis. Acta Geochim., v.40, pp.51–66.

    Google Scholar 

  • Chatterjee, N., Bhattacharya, A., Duarah, B. P. and Mazumdar, A. C. (2011) Late Cambrian Reworking of Paleo-Mesoproterozoic Granulites in Shillong-Meghalaya Gneissic Complex (Northeast India): Evidence from PT Pseudosection Analysis and Monazite Chronology and Implications for East Gondwana Assembly. Jour. Geol., v.119(3), pp.311–330.

    Article  Google Scholar 

  • Clarke, D.B., Dorais, M., Barbarin, B., Barker, D., Cesare, B., Clarke, G., El Baghdadi Erdmann, S., Forster, H.J., Gaeta, M., Gottesmann, B., Jamieson, R. A., Kontak, D. J., Koller, F., Gomes, C. L., London, D., Morgan V. I. G. B., Neves, L.J.P.F., Pattison, D.R.M., Pereira, Pichavant, M., Rapela, C.W., Renno, A. D., Richards, S., Roberts, M., Rottura, A., Saavedra, J., Sial, A.N., Toselli, A.J., Ugidos, J.M., Uher, P., Villaseca, C., Visona, D., Whitney, D. L., Williamson, B., and Woodard, H.H. (2005) Occurrence and origin of andalusite in peraluminous felsic igneous rocks. Jour. Petrol., v.46, pp.441–472.

    Article  Google Scholar 

  • Condie, K.C. (2016) Earth as an evolving planetary system; 3rd ed., 430p.

  • Dahlquist, J.A., Galindo, C., Pankhurst, R.J., Rapela, C.W., Alsino, P.H., Saavedra, J. and Fanning, C.M. (2007) Magmatic evolution of the Penon Rosado Granite: petrogenesis of garnet bearing granitoids. Lithos, v.95, pp.177–207.

    Article  Google Scholar 

  • Dash, C.R. and Chatterjee, B. (1992) Geology of the Patharkhammah-Umpyrtha, East Khasi Hills district, Meghalaya. Geol. Surv. India Publ. v.125(4), pp.24–26.

    Google Scholar 

  • De La Roche, H., Leterrier, J., Grandelaude, P. and Marchal, M. (1980) A classification of volcanic and plutonic rocks using R1R2-diagram and major element analyses-Its relation with current nomenclature. Chemical Geol., v.29(1–4), pp.183–210.

    Article  Google Scholar 

  • Deer, W.A., Howie, A. and Zussman, J. (1986) An introduction to rock-forming minerals. 17th Longman Ltd., v.528, pp.16.

    Google Scholar 

  • Dodge, F.C.W., Smith, V.C. and Mays, R.E. (1969) Biotite from granitic rocks of the central Sierra Nevada batholiths, California. Jour. Petrol., v.120, pp.250–271.

    Article  Google Scholar 

  • Dwivedi, S.B. and Theunuo, K. (2011) Two pyroxene bearing Granulites from Patharkhang Shillong -Meghalaya Gneissic Complex (SMGC). Curr. Sci., v.100, pp.100–105.

    Google Scholar 

  • Dymek, R.F. (1983) Titanium, aluminium and interlayer cation substitutions in biotite from high grade gneisses, West Greenland. Amer. Mineral., v. 68, pp. 880–899.

    Google Scholar 

  • Egal, E., Thieblemont, D., Lahondere, D., Guerrot, C., Costea, C.A., Iliescu, D., Delor, C., Goujou, J.C., Lafon, J.M., Tegyey, M., Diabyand, S. and Kolie, P. (2002) Late Eburnean granitization and tectonics along the western and north western margin of the Archean Kenema-Man domain (Guinea, West African Craton). Precambrian Res., v.117, pp.57–84.

    Article  Google Scholar 

  • Elkins, L.T. and Grove, T.L. (1990) Ternary feldspar experiments and thermodynamic models. Amer. Mineral., v.75, pp.544–559.

    Google Scholar 

  • Evans, P. (1964) The tectonic framework of Assam. Jour. Geol. Soc. India, v.5, pp.80–96.

    Google Scholar 

  • Finch, A.A., Parsons, I. and Mingard, S.C. (1995) Biotite as indicator of fluorine fugacities in late stage magmatic fluids: the Garder province of south Greenland. Jour. Petrol., v.36(6), pp.1701–1728.

    Google Scholar 

  • Forbes, W.C. and Flower, M.F.J. (1974) Phase relations of titan-phlogopite K2Mg4TiAl2Si6O20(OH)4: a refractory phase in the upper mantle? Earth Planet. Sci. Lett., v.22(1), pp.60–66.

    Article  Google Scholar 

  • Frost, B.R., Barnes, C.G., Collins, W.J., Arculus, R.J., Ellis, D.J. and Frost, C.D. (2001) A geochemical classification for granitic rocks. Jour. Petrol., v.42, pp.2033–2048.

    Article  Google Scholar 

  • Garrels, R.M. and Mackenzie, F.T. (1971) Evolution of Sedimentary rocks, W.W. Norton & Co., New York, 394p.

    Google Scholar 

  • Ghiroso, M.S. (1984) Activity/composition relations in the ternary feldspar. Contrib. Mineral. Petrol., v.87(3), pp.282–296.

    Article  Google Scholar 

  • Ghosh, S., Chakraborty, S., Bhalla J.K., Paul, D.K., Sarkar, A., Bishui, P.K. and Gupta, S.N. (1991) Geochronology and geochemistry of granite plutons from East Khasi Hills, Meghalaya. Jour. Geol. Soc. India, v.37, pp.331–342.

    Google Scholar 

  • Ghosh, S., Chakraborty, S., Paul, D.K., Bhalla, J.K., Bishui, P.K. and Gupta, S.N. (1994a) New Rb-Sr isotopic ages and geochemistry of granitoids from Meghalaya and their significance in middle to late Proterozoic crustal evolution. Indian Minerals, v.48, pp.33–44.

    Google Scholar 

  • Ghosh, S., Fallic, A.E., Paul, D.K. and Potts, P.J. (2005) Geochemistry and origin of Neoproterozoic granitoids of Meghalaya, Northeast India: Implicatins for linkage with amalgamation of Gondwana supercontinent. Gondwana Res., v.8, pp.421–432.

    Article  Google Scholar 

  • Glazner, A.F. and Johnson, B.R. (2013) Late crystallisation of K-feldspar and the paradox of megacystis granites. Contrib. Mineral. Petrol., v.166, pp.777–799.

    Article  Google Scholar 

  • Guidotti, C.V., Cheney, J.T. and Guggenheim, S. (1977) Distribution of Ti between coexisting phases between muscovite and biotite in politic schists of northwestern Maine. Amer. Mineral., v.62, pp.438–448.

    Google Scholar 

  • Guidotti, C.V., Cheney, J. and Henry, D.J. (1988) Compositional variation of biotite as a function of metamorphic reactions and mineral assemblage in the politic schists of western Maine. Amer. Jour. Sci., v.288, pp.270–292.

    Google Scholar 

  • Harris N.B.W., Pearce, J.A. and Tindle, A.G. (1986). Geochemical characteristics of collision zone magmatism.-In: Coward, M.P. & Ries, A.C.(Eds);Collision tectonics -Geol. Soc. Lond. Spec. Publ. v. 9, pp. 67–81.

  • Henry, D.J., Guidotti, C.V. and Thomson, J.A. (2005) The Ti saturation surface for low to medium pressure metapelitic biotite: Implications for geothermometry and Ti substitution mechanism. Amer. Mineral., v.90, pp.316–328.

    Article  Google Scholar 

  • Henry, D.J. and Guidotti, C.V. (2002) Ti in biotite from metapelitic rocks: Temperature effects, crystallochemical controls and petrologic application. Amer. Mineral., v.87, pp.375–382.

    Article  Google Scholar 

  • Heselton, H.T., Jr., Hovis, G.L., Hemmingway, B.S., Robie, R.A. (1983) Calorimetric investigation of excess entropy of mixing in albite -sanidine solid solutions:lack of evidence for Na, K short range order and implications for two feldspar thermometry. Amer. Mineral., v.68, pp.398–413.

    Google Scholar 

  • Ishihara, S. (1977) The magnetite series and ilmenite series granitic rocks. Mining Geol., v.27, pp.293–305.

    Google Scholar 

  • Ishihara, S. (1981) The granitoid series and mineralization. Econ. Geol., 75th Anniver. volume, pp.458–484.

  • Kemp, A.I.S., Hawkesworth, C.J., Foster, G.L., Paterson, B.A., Woodhead, J.D., Hergt, J.M., Cray, C.M., Whitehouse, M.J. (2007). Magmatic and crustal differentiation history of granitic rocks from Hf-O isotopes in zircon. Science, v.315(5814), pp.980–983.

    Article  Google Scholar 

  • Kumar, S. (1990) Petrochemistry and geochronology of pink granite from Songsak, East Garo Hills, Meghalaya. Jour. Geol. Soc. India, v.35, pp.277–279.

    Google Scholar 

  • Kumar, S. (1998) Granitoids and their enclaves from east Khasi hills of Meghalaya: Petrogenetic and Geochemical reappraisal. Workshop on “Geodynamics and Natural Resources of North East India. Dibrugarh, Assam, Abstract volume, pp.17–18.

  • Kumar, S. (2009) Geology of North -east India: Frontiers for Research Activities. In: M.K. Mazumdar (Ed.), Geoscientific Issues of North-east India, Pragjyotish College, Guwahati, pp.103–111.

    Google Scholar 

  • Kumar, S. Pieru, T., Rino, V. and Lyngooh, B.C. (2005) Microgranular enclaves in Neoproterozoiv granitoids of South Khasi Hills, Meghalaya Plateau, North East India; field evidences of interacting coeval mafic and felsic magmas. Jour. Geol. Soc. India, v.65, pp.629–633.

    Google Scholar 

  • Kumar, S., Rino, V., Hayasaka, Y., Kimura, K., Raju, S., Terada, K. and Pathak, M. (2017) Contribution of Columbia and Gondwana Supercontinent assembly and growth related magmatism in the evolution of Meghalaya Plateau and Mikir Hills, Northeast India: constraints from U-PbSHRIMP zircon geochronology and geochemistry. Lithos, v.277, pp.356–377.

    Article  Google Scholar 

  • Labotka, T. C. (1983) Analysis of the compositional variations of biotite in politic hornfels from northeastern Minnesota. Amer. Mineral., v.68, pp.900–914.

    Google Scholar 

  • Lal, R.K., Ackermand, D., Scifert, F. and Halder, S.K. (1978) Chemographic relationship in Sapphirine bearing rocks from Sonapahar, Assam, India. Mineral. Petrol., v.67, pp.169–187.

    Article  Google Scholar 

  • Luth, W.C., Jahns, R.H. and Tuttle, O.F. (1964) The granite system at pressures of 4 to 10 Kilo bars. Jour. Geophys. Res., v.69, pp.759–773.

    Article  Google Scholar 

  • Majumdar, D. and Dutta, P. (2016) Geodynamic evolution of a Pan-African granitoid of extended Dizo Valley in Karbi Hills, NE India: Evidence from Geochemistry and Isotope Geology. Jour. Asian Earth Sci., v.117, pp.256–268.

    Article  Google Scholar 

  • Mazumdar, S.K. (1976) A summary of the Precambrian Geology of Khasi Hills, Meghalaya. Geol. Surv. India Misc. Publ., v.23(2), pp.311–334.

    Google Scholar 

  • Mazumdar, S.K. (1986) The Precambrian framework of part of the Khasi Hills, Meghalaya. Rec. Geol. Surv. India, v.117, pp.1–59.

    Google Scholar 

  • Mitra, S.K. (1998) Structure, sulphide mineralization and age of the Shillong group of rocks, Meghalaya. Abst. volume, M.S. Krishnan Commem. Nat. Sem., pp.118–119.

  • Mitra, S.K. (2005) Tectonic setting of the Meghalaya Plateau and it’s sulphide mineralization. Jour. Geol. Soc. India, v.65, pp.117–118.

    Google Scholar 

  • Nachit, H., Razafimahefa, N., Stussi, J.M. and Caron, J.P. (1985) Composition chimique des Biotites et typologie magmatique des granitoids. C.R. Acad. Sci. Paris. Sr.II, v.301, pp.813–818.

    Google Scholar 

  • Nandy, D.R. (2001) Geodynamics of northeastern India and the adjoining region. ABC Publication, Kolkata. 209p.

    Google Scholar 

  • Neiva, A.M.R. (1981) Geochemistry of hybrid granitoid rocks and of their biotites from central northern Portugal and their petrogenesis. Lithos, v.14(2), pp.149–163.

    Article  Google Scholar 

  • O’Connor, J.T. (1965) A classification for quartz-rich igneous rock based on feldspar ratios. USGS Prof. Paper, 525B, B79–B84.

  • Pearce, J.A., Harris, N.B.W. and Tindle, A.G. (1984) Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Jour. Petrol., v.25(4), pp.956–983.

    Article  Google Scholar 

  • Piwinski, A.J. (1973) Experimental studies of granitoids from the Central and Southern Coast Ranges, California. Tchermaks Mineral. Petrogr. Mitt., v.20, pp.107–130.

    Article  Google Scholar 

  • Putrika, K., Tepley, F. (Eds.) (2008) Minerals, Inclusions and Volcanic Processes, Rev. Min. Geochem., Mineralogical Soc. Amer., v.69, pp. 61–120.

  • Ray, J., Saha, A., Ganguly, S., Balaram, V., Khishna, A.K. and Hazara, S. (2011) Geochemistry and Petrogenesis of Neoproterozoic Mylliem granitoids, Meghalaya Plateau, Northeastern India. Jour. Earth System Sci., v.120, pp.459–473.

    Article  Google Scholar 

  • Shabani, A., Lalonde, A.E., Whalen, J.B. (2003) Composition of biotite from granitic rocks of the Canadian Appalachian Orogen:A potential tectonomagmatic indicator? Canadian Mineral., v.41(6), pp.1381–1396.

    Article  Google Scholar 

  • Sheppard, S., Occipinti, S.A. and Taylor, I.M. (2003) The relationship between tectonism and composition of granitoid magmas, Yarlarweelor Gneiss complex, western Australlia. Lithos, v.66, pp.133–154.

    Article  Google Scholar 

  • Spear, J.A. (1981a) Petrology of cordierite and almandine bearing granitoid plutons of the southern Appalachian Piedmont. U.S.A. Canadian Mineral., v.19, pp.35–46.

    Google Scholar 

  • Speer, J.A. (1984) Micas in Igneous Rocks, In: S.W. Bailey (Ed.), Micas: Reviews in Mineralogy. Mineral. Soc. Amer., v.13, pp.299–356.

    Google Scholar 

  • Srivastava, R.K., Heman, L.M., Sinha, A.K., Shihua, S. (2004) Empalcement age and isotope geochemistry of Sung Valley alkaline-carbonatite complex, Shillong Plateau, northeastern India: Implications for primary carbonate melt and genesis of the associated silicate rocks. Lithos, v.81, pp.33–34.

    Article  Google Scholar 

  • Stormer, J.C., Jr. (1975) A Practical two -feldspar Geothermometer. Amer. Mineral., v.60, pp.667–674.

    Google Scholar 

  • Sun, S.S. and McDonough, W.F. (1989) Chemical and isotope systematics of oceanic basalts: implication for mantle composition and processes. Geol. Soc. London Spec. Publ., v.42, pp.313–345.

    Article  Google Scholar 

  • Taylor, S.R. and McLennan, S.M. (1985) The continental crust:its composition and evolution. Blackwell Scientfic publication, Carlton, 312p.

    Google Scholar 

  • Tonnes, R.G., Edgar, A.D. and Arima, M. (1985) A high pressure -high temperature study of TiO2 solubility in Mg rich phlogopite:implications to phlogopite chemistry. Geochim. Cosmochim. Acta, v.49, pp.2323–2329.

    Article  Google Scholar 

  • Tracy, R.J., Robinson, P. (1988) Silicate-Sulfide-Oxide-fluid reaction in granulite grade politic rocks, Central Massachusetts. Amer. Jour. Sci., v.288A, pp.45–74.

    Google Scholar 

  • Tuttle, O.F. and Friedman, I. (1948) Liquid immiscibility in the system H2O−Na2O−SiO2. Amer. Chem. Soc. Jour., v.70, pp.919–926.

    Article  Google Scholar 

  • Tuttle, O.F., Bowen, N.L. (1958) Origin of granite in the light of experimental studies in the system NaAlSi3O8−KAlSi3O8−SiO2−H2O. Jour. Geol. Soc. Amer., v.74, pp.1–146.

    Google Scholar 

  • Whalen, J.B., Currie, K.L. and Chappell, B.W. (1987) A type granites: geochemical characteristics, discrimination and petrogenesis. Contrib. Mineral. Petrol., v.95, pp.407–419

    Article  Google Scholar 

  • Whitney, J.A., Stromer, J.C. (1977) Two-feldspar geothermometry, geobarometry in mesozonal granitic intrusions: Three examples from the Piedmont of Georgia. Contrib. Mineral. Petrol., v.63(1), pp.51–64.

    Article  Google Scholar 

  • Wones, D.R. and Eugster, H.P. (1965) Stability of biotite experiment theory and applications. Amer. Mineral., v.59(9), pp.1228.

    Google Scholar 

  • Yin, A., Dubey, C.S., Webb, A.A., Grove, M., Gehrels, G.E. and Burgess, W.P. (2010a) Geologic correlation of the Himalayan orogeny and Indian craton (part I): Structural Geology, U-Pb zircon Geochronology and Tectonic Evolution of the Shillong Plateau and its Neighbouring Regions in NE India. Bull. Geol. Soc. Amer., v.122(3/4), pp.336–359.

    Article  Google Scholar 

  • Zhao, J.H. and Zhou, M.F. (2009) Melting of newly formed mafic crust for the formation of Neoproterozoic I-type granite in the Hannan region, South China. Jour. Geol., v.117, pp.54–70.

    Article  Google Scholar 

Download references

Acknowledgement

The present work is a part of Ph.D research work carried out by Anamika Gogoi at the Department of Geological Sciences, Gauhati University, Assam, India under the guidance of Dr. B. Bhagabaty.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anamika Gogoi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gogoi, A., Bhagabaty, B. Mineral Chemistry and Geothermometry of Biotite in the Granitoids, Located in and around Jirang-Patharkhamah Area, Ri-Bhoi District, Meghalaya, India. J Geol Soc India 98, 245–259 (2022). https://doi.org/10.1007/s12594-022-1965-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-022-1965-6

Navigation