Skip to main content
Log in

Late crystallization of K-feldspar and the paradox of megacrystic granites

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

K-feldspar crystals >5 cm in greatest dimension are common in calc-alkaline granites and granodiorites worldwide. Such megacrysts are generally interpreted as having grown to large sizes early in a magma’s crystallization history while they were largely molten, owing to field relations such as megacryst alignment and megacryst-rich clusters and to crystallographic features such as zonally arranged inclusions and sawtooth Ba zoning. These features are consistent with early growth but do not require it. In contrast, experimental petrology, mineral compositions, and natural examples of partial melting of granite demonstrate that K-feldspar is typically the last major phase to crystallize and that most K-feldspar growth occurs after the magma crosses the rheologic lock-up threshold of ~50 % crystals. The near-absence of K-feldspar phenocrysts in dacite lavas and tuffs, even in highly crystalline ones, demonstrates that natural magmas do not precipitate significant K-feldspar while they are mobile. The highly potassic compositions of megacrysts (and indeed, of K-feldspar in non-megacrystic granites as well) require exsolution of albite component down to temperatures of ~400 °C. The low Ca contents of megacrysts cannot result from exsolution of anorthite and must represent recrystallization of the crystals at low temperature. These mineralogical and experimental constraints require that K-feldspar megacrysts indicate widespread and thorough recrystallization of the host granites and granodiorites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Al-Rawi Y, Carmichael ISE (1967) A note on the natural fusion of granite. Am Mineral 52:1806–1814

    Google Scholar 

  • Annen C, Blundy JD, Sparks RSJ (2006) The genesis of intermediate and silicic magmas in deep crustal hot zones. J Petrol 47:505–539

    Google Scholar 

  • Bachmann O, Bergantz GW (2006) Gas percolation in upper-crustal silicic crystal mushes as a mechanism for upward heat advection and rejuvenation of near-solidus magma bodies. J Volcanol Geotherm Res 149:85–102

    Google Scholar 

  • Bachmann O, Dungan MA, Lipman PW (2002) The Fish Canyon magma body, San Juan volcanic field, Colorado; rejuvenation and eruption of an upper-crustal batholith. J Petrol 43:1469–1503

    Google Scholar 

  • Bachmann O, Dungan MA, Bussy F (2005) Insights into shallow magmatic processes in large silicic magma bodies: the trace element record in the Fish Canyon magma body, Colorado. Contrib Miner Petrol 149:338–349

    Google Scholar 

  • Bacon CR, MacDonald R, Smith RL, Baedecker PA (1981) Pleistocene high-silica rhyolites of the Coso volcanic field, Inyo County, California. J Geophys Res 86:10223–10241

    Google Scholar 

  • Bartley JM, Coleman DS, Glazner AF (2008) Incremental pluton emplacement by magmatic crack-seal. Trans R Soc Edinb Earth Sci 97:383–396

    Google Scholar 

  • Basu A, Vitaliano CJ (1976) Sanidine from the Mesa Falls Tuff, Ashton, Idaho. Am Mineral 61:405–408

    Google Scholar 

  • Bateman PC (1992) Plutonism in the central part of the Sierra Nevada Batholith, California. US Geological Survey Professional Paper 1483

  • Bateman PC, Chappell BW (1979) Crystallization, fractionation, and solidification of the Tuolumne intrusive series, Yosemite National Park, California. Geol Soc Am Bull 90:465–482

    Google Scholar 

  • Bateman PC, Dodge FCW, Bruggman PE (1984) Major oxide analyses, CIPW norms, modes, and bulk specific gravities of plutonic rocks from the Mariposa 1 degrees by 2 degrees sheet, central Sierra Nevada, California. Open-File Report— US Geological Survey 84-0162

  • Bateman PC, Chappell BW, Kistler RW, Peck DL, Busacca AJ (1988) Tuolumne Meadows quadrangle, California; analytic data. US Geological Survey Bulletin 1819

  • Boudreau AE, McBirney AR (1997) The Skaergaard layered series; part III, Non-dynamic layering. J Petrol 38:1003–1020

    Google Scholar 

  • Carmichael ISE, Turner FJ, Verhoogen J (1974) Igneous petrology. McGraw-Hill, New York

    Google Scholar 

  • Carpenter MA (1981) A “conditional spinodal” within the peristerite miscibility gap of plagioclase feldspars. Am Mineral 66:553–560

    Google Scholar 

  • Carstens H (1986) Displacive growth of authigenic pyrite. J Sediment Petrol 56:252–257

    Google Scholar 

  • Casas E, Lowenstein TK (1989) Diagenesis of saline pan halite; comparison of petrographic features of modern, Quaternary and Permian halites. J Sediment Petrol 59:724–739

    Google Scholar 

  • Cathey HE, Nash BP (2004) The Cougar Point Tuff; implications for thermochemical zonation and longevity of high-temperature, large-volume silicic magmas of the Miocene Yellowstone hotspot. J Petrol 45:27–58

    Google Scholar 

  • Chapin CE, Lindley JI (1986) Potassium metasomatism of igneous and sedimentary rocks in detachment terranes and other sedimentary basins: economic implications. Ariz Geol Soc Dig 16:118–126

    Google Scholar 

  • Chapman NA, Powell R (1976) Origin of anorthoclase megacrysts in alkali basalts. Contrib Miner Petrol 58:29–35

    Google Scholar 

  • Cherniak DJ (2002) Ba diffusion in feldspar. Geochim Cosmochim Acta 66:1641–1650

    Google Scholar 

  • Chesner CA (1998) Petrogenesis of the Toba Tuffs, Sumatra, Indonesia. J Petrol 39(3):397–438

    Google Scholar 

  • Clarke DB, Clarke GKC (1998) Layered granodiorites at Chebucto Head, South Mountain Batholith, Nova Scotia. J Struct Geol 20:1305–1324

    Google Scholar 

  • Clavero JE, Sparks RSJ, Pringle MS, Polanco E, Gardeweg MC (2004) Evolution and volcanic hazards of Taapaca volcanic complex, Central Andes of northern Chile. J Geol Soc Lond 161:603–618

    Google Scholar 

  • Coleman DS, Gray W, Glazner AF (2004) Rethinking the emplacement and evolution of zoned plutons: geochronologic evidence for incremental assembly of the Tuolumne Intrusive Suite, California. Geology 32:433–436

    Google Scholar 

  • Coleman DS, Glazner AF, Bartley JM, Law R (2005) Incremental assembly and emplacement of mesozoic plutons in the Sierra Nevada and White and Inyo Ranges, California. Geological Society of America Field Forum Field Trip Guide (rethinking the assembly and evolution of plutons: field tests and perspectives, 7–14 October 2005)

  • Congdon RD, Nash WP (1988) High fluorine rhyolite; an eruptive pegmatite magma at the Honeycomb Hills, Utah. Geology 16:1018–1021

    Google Scholar 

  • Costa F, Singer B (2002) Evolution of Holocene dacite and compositionally zoned magma, Volcan San Pedro, Southern volcanic zone, Chile. J Petrol 43:1571–1593

    Google Scholar 

  • Costa F, Scaillet B, Pichavant M (2004) Petrological and experimental constraints on the pre-eruption conditions of Holocene dacite from Volcan San Pedro (36 degrees S, Chilean Andes) and the importance of sulphur in silicic subduction-related magmas. J Petrol 45:855–881

    Google Scholar 

  • Cox RA, Dempster TJ, Bell BR, Rogers G (1996) Crystallization of the shap granite; evidence from zoned K-feldspar megacrysts. J Geol Soc Lond 153:625–635

    Google Scholar 

  • Davis JW, Coleman DS, Gracely JT, Gaschnig R, Stearns M (2012) Magma accumulation rates and thermal histories of plutons of the Sierra Nevada Batholith, CA. Contrib Miner Petrol 163:449–465

    Google Scholar 

  • de Silva SL, Self S, Francis PW, Drake RE, Ramirez RC (1994) Effusive silicic volcanism in the Central Andes; the Chao Dacite and other young lavas of the Altiplano-Puna volcanic complex. J Geophys Res B Solid Earth Planets 99:17805–17825

    Google Scholar 

  • Dini A, Innocenti F, Rocchi S, Tonarini S, Westerman DS (2002) The magmatic evolution of the late Miocene laccolith–pluton–dyke granitic complex of Elba Island, Italy. Geol Mag 139:257–279

    Google Scholar 

  • Ennis DJ, Dunbar NW, Campbell AR, Chapin CE (2000) The effects of K-metasomatism on the mineralogy and geochemistry of silicic ignimbrites near Socorro, New Mexico. Chem Geol 167:285–312

    Google Scholar 

  • Ernst WG (1976) Petrologic phase equilibria. W. H. Freeman, San Francisco

    Google Scholar 

  • Essene EJ, Claflin CL, Giorgetti G, Mata PM, Peacor DR, Árkai P, Rathmell MA (2005) Two-, three- and four-feldspar assemblages with hyalophane and celsian: implications for phase equilibria in BaAl2Si2O8–CaAl2Si2O8–NaAlSi3O8–KAlSi3O8. Eur J Mineral 17:515–535

    Google Scholar 

  • Farina F, Dini A, Innocenti F, Rocchi S, Westerman DS (2010) Rapid incremental assembly of the Monte Capanne pluton (Elba Island, Tuscany) by downward stacking of magma sheets. Geol Soc Am Bull 122:1463–1479

    Google Scholar 

  • Farina F, Stevens G, Villaros A (2012) Multi-batch, incremental assembly of a dynamic magma chamber: the case of the Peninsula pluton granite (Cape Granite Suite, South Africa). Mineral Petrol. doi:10.1007/s00710-012-0224-8

    Google Scholar 

  • Fenn PM (1977) The nucleation and growth of alkali feldspars from hydrous melts. Can Mineral 15:135–161

    Google Scholar 

  • Folkes CB, Silva SL, Wright HM, Cas RAF (2011) Geochemical homogeneity of a long-lived, large silicic system; evidence from the Cerro Galán caldera, NW Argentina. Bull Volcanol 73:1455–1486

    Google Scholar 

  • Fox PE, Moore JM Jr (1969) Feldspars from Adamant pluton, British Columbia. Can J Earth Sci 6:1199–1209

    Google Scholar 

  • Frankel KL, Glazner AF, Kirby E, Monastero FC, Strane MD, Oskin ME, Unruh JR, Walker JD, Anandakrishnan S, Bartley JM, Coleman DS, Dolan JF, Finkel RC, Greene D, Kylander-Clark A, Marrero S, Owen LA, Phillips F (2008) Active tectonics of the Eastern California shear zone. GSA Field Guide 11:43–81

    Google Scholar 

  • Gagnevin D, Daly JS, Poli G, Morgan D (2005) Microchemical and Sr isotopic investigation of zoned K-feldspar megacrysts; insights into the petrogenesis of a granitic system and disequilibrium crystal growth. J Petrol 46:1689–1724

    Google Scholar 

  • Gilbert GK (1906) Gravitational assemblage in granite. Geol Soc Am Bull 17:321–328

    Google Scholar 

  • Ginibre C, Woerner G, Kronz A (2004) Structure and dynamics of the Laacher See magma chamber (Eifel, Germany) from major and trace element zoning in sanidine; a cathodoluminescence and electron microprobe study. J Petrol 45:2197–2223

    Google Scholar 

  • Glazner AF (1988) Stratigraphy, structure, and potassic alteration of Miocene volcanic rocks in the Sleeping Beauty area, central Mojave Desert, California. Geol Soc Am Bull 100:424–435

    Google Scholar 

  • Glazner AF, Bartley JM (2006) Is stoping a volumetrically significant pluton emplacement process? Geol Soc Am Bull 118:1185–1195

    Google Scholar 

  • Glazner AF, Nielson JE, Howard KA, Miller DM (1986) Correlation of the Peach Springs Tuff, a large-volume Miocene ignimbrite sheet in California and Arizona. Geology 14:840–843

    Google Scholar 

  • Glazner AF, Bartley JM, Law, B, Coleman DS (2011) The granite aqueduct and advection of water and heat through plutonic terranes. In: 2011 fall meeting, AGU, abstract V14B-05

  • Gourgaud A, Villemant B (1992) Evolution of magma mixing in an alkaline suite: the Grande Cascade sequence (Monts-Dore, French Massif Central). Geochemical modelling. J Volcanol Geotherm Res 52:255–275

    Google Scholar 

  • Gray WM (2003) Chemical and thermal evolution of the Late Cretaceous Tuolumne Intrusive Suite, Yosemite National Park, California. Ph.D. University of North Carolina

  • Gray W, Glazner AF, Coleman DS, Bartley JM (2008) Long-term geochemical variability of the Late Cretaceous Tuolumne Intrusive Suite, central Sierra Nevada, California. Geol Soc Lond Spec Publ 304:183–201

    Google Scholar 

  • Gualda GAR, Ghiorso MS, Lemons RV, Carley TL (2012) Rhyolite-MELTS: a modified calibration of MELTS optimized for silica-rich, fluid-bearing magmatic systems. J Petrol 53:875–890

    Google Scholar 

  • Hall A (1966) The alkali feldspars of the Ardara pluton, Donegal. Mineral Mag 35:693–703

    Google Scholar 

  • Hayden LA, Watson EB, Wark DA (2008) A thermobarometer for sphene (titanite). Contrib Miner Petrol 155:529–540

    Google Scholar 

  • Hibbard MJ, Watters RJ (1985) Fracturing and diking in incompletely crystallized granitic plutons. Lithos 18:1–12

    Google Scholar 

  • Higgins MD (1999) Origin of megacrysts in granitoids by textural coarsening; a crystal size distribution (CSD) study of microcline in the Cathedral Peak Granodiorite, Sierra Nevada, California. Geol Soc Spec Publ 168:207–219

    Google Scholar 

  • Higgins MD (2011a) Textural coarsening in igneous rocks. Int Geol Revew 53:354–376

    Google Scholar 

  • Higgins MD (2011b) Quantitative petrological evidence for the origin of K-feldspar megacrysts in dacites from Taapaca volcano, Chile. Contrib Mineral Petrol 162:709–723

    Google Scholar 

  • Hildreth EW (1977) The magma chamber of the Bishop Tuff; gradients in temperature, pressure, and composition. Doctoral. University of California at Berkeley

  • Hildreth W (1981) Gradients in silicic magma chambers: implications for lithospheric magmatism. J Geophys Res 86:10153–10192

    Google Scholar 

  • Hirt WH (2007) Petrology of the Mount Whitney Intrusive Suite, eastern Sierra Nevada, California; implications for the emplacement and differentiation of composite felsic intrusions. Geol Soc Am Bull 119:1185–1200

    Google Scholar 

  • Holness MB (2003) Growth and albitization of K-feldspar in crystalline rocks in the shallow crust: a tracer for fluid circulation during exhumation? Geofluids 3:89–102

    Google Scholar 

  • Holtz F, Sato H, Lewis J, Behrens H, Nakada S (2005) Experimental petrology of the 1991–1995 Unzen dacite, Japan; part I, phase relations, phase composition and pre-eruptive conditions. J Petrol 46:319–337

    Google Scholar 

  • Huang F, Lundstrom CC, Glessner J, Ianno A, Boudreau A, Li J, Ferre EC, Marshak S, DeFrates J (2009) Chemical and isotopic fractionation of wet andesite in a temperature gradient; experiments and models suggesting a new mechanism of magma differentiation. Geochim Cosmochim Acta 73:729–749

    Google Scholar 

  • Johnson BR, Glazner AF (2010) Formation of K-feldspar megacrysts in granodioritic plutons by thermal cycling and late-stage textural coarsening. Contrib Miner Petrol 159:599–619

    Google Scholar 

  • Johnson MC, Rutherford MJ (1989) Experimentally determined conditions in the Fish Canyon Tuff, Colorado, magma chamber. J Petrol 30:711–737

    Google Scholar 

  • Kaczor SM, Hanson GN, Peterman ZE (1988) Disequilibrium melting of granite at the contact with a basic plug; a geochemical and petrographic study. J Geol 96:61–78

    Google Scholar 

  • Keller J, Villari L (1973) Rhyolitic ignimbrites in the region of Afyon (Central Anatolia). Bull Volcanol 36:342–358

    Google Scholar 

  • Kelly PJ, Kyle PR, Dunbar NW, Sims KWW (2008) Geochemistry and mineralogy of the phonolite lava lake, Erebus Volcano, Antarctica; 1972–2004 and comparison with older lavas. J Volcanol Geotherm Res 177:589–605

    Google Scholar 

  • Kerrick DM (1969) K-feldspar megacrysts from a porphyritic quartz monzonite, central Sierra Nevada, California. Am Mineral 54:839–848

    Google Scholar 

  • Lindsay JM, Schmitt AK, Trumbull RB, de Silva SL, Siebel W, Emmermann R (2001) Magmatic evolution of the La Pacana Caldera system, Central Andes, Chile; compositional variation of two cogenetic, large-volume felsic ignimbrites. J Petrol 42:459–486

    Google Scholar 

  • Lipman PW (1975) Evolution of the Platoro caldera complex and related volcanic rocks, southeastern San Juan Mountains, Colorado. US Geological Survey Professional Paper 128

  • Lipman PW, Weston PE (2001) Preliminary scientific results of the Creede Caldera Continental Drilling Program; phenocryst compositions of late ash-flow tuffs from the central San Juan Caldera cluster; results from Creede drill-hole samples and implications for regional stratigraphy. Open-File Report—US Geological Survey 43

  • Lipman PW, Dungan M, Bachmann O (1997) Comagmatic granophyric granite in the Fish Canyon Tuff, Colorado: implications for magma-chamber processes during a large ash-flow eruption. Geology 25:915–918

    Google Scholar 

  • Long PE, Luth WC (1986) Origin of K-feldspar megacrysts in granitic rocks; implications of a partitioning model for barium. Am Mineral 71:367–375

    Google Scholar 

  • Mahood GA (1981) Chemical evolution of a Pleistocene rhyolitic center: Sierra La Primavera, Jalisco, Mexico. Contrib Miner Petrol 77:129–149

    Google Scholar 

  • Mahood G, Hildreth W (1983) Large partition coefficients for trace elements in high-silica rhyolites. Geochim Cosmochim Acta 47:11–30

    Google Scholar 

  • Marsh BD (1981) On the crystallinity, probability of occurrence, and rheology of lava and magma. Contrib Miner Petrol 78:85–98

    Google Scholar 

  • Maughan LL, Christiansen EH, Best MG, Gromme CS, Deino AL, Tingey DG (2002) The Oligocene Lund Tuff, Great Basin, USA; a very large volume monotonous intermediate. J Volcanol Geotherm Res 113:129–157

    Google Scholar 

  • Rocchi S, Dini A, Mazzarini, F, Westerman DS Gemelli M (2008) Physical geology of subvolcanic systems: laccolith, sills and dykes: field guidebook. In: LASI III conference, Elba

  • McMurry J (2001) Crystal accumulation and shearing in a megacrystic quartz monzonite; Bodoco Pluton, northeastern Brazil. J Petrol 42:251–276

    Google Scholar 

  • Mehnert KR, Buesch W (1981) The Ba content of K-feldspar megacrysts in granites; a criterion for their formation. Neues Jahrbuch fuer Mineralogie Abhandlungen 140:221–252

    Google Scholar 

  • Mehnert KR, Buesch W, Schneider G (1973) Initial melting at grain boundaries of quartz and feldspar in gneisses and granulites. Neues Jahrbuch fuer Mineralogie Monatshefte 4:165–183

    Google Scholar 

  • Memeti V, Paterson S, Matzel J, Mundil R, Okaya D (2010) Magmatic lobes as “snapshots” of magma chamber growth and evolution in large, composite batholiths: an example from the Tuolumne intrusion, Sierra Nevada, California. Geol Soc Am Bull 122:1912–1931

    Google Scholar 

  • Meurer WP, Boudreau AE (1996) Compaction of density-stratified cumulates; effect on trapped-liquid distribution. J Geol 104:115–120

    Google Scholar 

  • Michel J, Baumgartner L, Putlitz B, Schaltegger U, Ovtcharova M (2008) Incremental growth of the Patagonian Torres del Paine laccolith over 90 ky. Geology 36:459–462

    Google Scholar 

  • Miller TP (2004) Geology of the Ugashik-Mount Peulik volcanic center, Alaska. In: Open-File Report—US Geological Survey 19

  • Mills RD, Glazner AF (2013) Experimental study on the effects of temperature cycling on coarsening of plagioclase and olivine in an alkali basalt. Contrib Miner Petrol. doi:10.1007/s00410-013-0867-4

    Google Scholar 

  • Mills RD, Ratner JJ, Glazner AF (2011) Experimental evidence for crystal coarsening and fabric development during temperature cycling. Geology 39:1139–1142

    Google Scholar 

  • Moore JG, Sisson TW (2008) Igneous phenocrystic origin of K-feldspar megacrysts in granitic rocks from the Sierra Nevada Batholith. Geosphere 4:387–400

    Google Scholar 

  • Morad S, Aldahan AA (1987) Diagenetic replacement of feldspars by quartz in sandstones. J Sediment Petrol 57:488–493

    Google Scholar 

  • Morse SA (1970) Alkali feldspars with water at 5 kb pressure. J Petrol 11:221–253

    Google Scholar 

  • Mustart DA, Horrigan MJ (2000) Hydrothermal pipes in three granitic plutons of the Tuolumne Intrusive Suite, Sierra Nevada Batholith, California. Abstr Prog Geol Soc Am 32:52

    Google Scholar 

  • Nakada S (1991) Magmatic processes in titanite-bearing dacites, central Andes of Chile and Bolivia. Am Mineral 76:548–560

    Google Scholar 

  • Nakada S, Motomura Y (1999) Petrology of the 1991–1995 eruption at Unzen: effusion pulsation and groundmass crystallization. J Volcanol Geotherm Res 89:173–196

    Google Scholar 

  • Neiva AMR (1995) Distribution of trace elements in feldspars of granitic aplites and pegmatites from Alijo-Sanfins, northern Portugal. Mineral Mag 59:35–45

    Google Scholar 

  • Nixon PH, Chapman NA, Smith JV (1980) Origin of Ba-rich sanidine megacrysts in a porphyry from Papua New Guinea. Mineral Mag 43:845–850

    Google Scholar 

  • Noyes HJ, Frey FA, Wones DR (1983) A tale of two plutons; geochemical evidence bearing on the origin and differentiation of the Red Lake and Eagle Peak plutons, central Sierra Nevada, California. J Geol 91:487–509

    Google Scholar 

  • Panter KS, Kyle PR, Smellie JL (1997) Petrogenesis of a phonolite-trachyte succession at Mount Sidley, Marie Byrd Land, Antarctica. J Petrol 38:1225–1253

    Google Scholar 

  • Pirsson LV (1909) Rocks and rock minerals. Wiley, New York

    Google Scholar 

  • Pitcher WS (1993) The nature and origin of granite. Chapman & Hall, London

    Google Scholar 

  • Pitcher WS, Berger AR (1972) The geology of Donegal: a study of granite emplacement and unroofing. Wiley-Interscience, New York

    Google Scholar 

  • Piwinskii AJ (1968) Studies of batholithic feldspars: Sierra Nevada, California. Contrib Miner Petrol 17:204–223

    Google Scholar 

  • Piwinskii AJ, Wyllie PJ (1968) Experimental studies of igneous rock series; a zoned pluton in the Wallowa Batholith, Oregon. J Geol 76:205–234

    Google Scholar 

  • Reid JB, Murray DP, Hermes OD, Steig EJ (1993) Fractional crystallization in granites of the Sierra Nevada—how important is it? Geology 21:587–590

    Google Scholar 

  • Rougvie JR, Sorensen SS (2002) Cathodoluminescence record of K-metasomatism in ash-flow tuffs; grain-scale mechanisms and large-scale geochemical implications. Geology 30:307–310

    Google Scholar 

  • Rutherford MJ, Sigurdsson H, Carey S, Davis A (1985) The May 18, 1980, eruption of Mount St. Helens 1. Melt composition and experimental phase equilibria. J Geophys Res 90:2929–2947

    Google Scholar 

  • Scaillet B, Evans BW (1999) The 15 June 1991 eruption of Mount Pinatubo. I. Phase equilibria and pre-eruption P–T–fO2–fH2O conditions of the dacite magma. J Petrol 40:381–411

    Google Scholar 

  • Seymour KS, Vlassopoulos D (1992) Magma mixing at Nisyros Volcano, as inferred from incompatible trace-element systematics. J Volcanol Geotherm Res 50:273–299

    Google Scholar 

  • Simakin AG, Bindeman IN (2008) Evolution of crystal sizes in the series of dissolution and precipitation events in open magma systems. J Volcanol Geotherm Res 177:997–1010

    Google Scholar 

  • Singer BS, Dungan MA, Layne GD (1995) Textures and Sr, Ba, Mg, Fe, K and Ti compositional profiles in volcanic plagioclase clues to the dynamics of calc-alkaline magma chambers. Am Mineral 80:776–798

    Google Scholar 

  • Sirbescu M-LC, Nabelek PI (2003) Crustal melts below 400 degrees C. Geology 31:685–688

    Google Scholar 

  • Solgadi F, Sawyer EW (2009) Formation of igneous layering in granodiorite by gravity flow: a field, microstructure and geochemical study of the Tuolumne Intrusive Suite at Sawmill Canyon, California. J Petrol 49:2009–2042

    Google Scholar 

  • Sparks RSJ, Francis PW, Hamer RD, Pankhurst RJ, O’Callaghan LO, Thorpe RS, Page R (1985) Ignimbrites of the Cerro Galán caldera, NW Argentina. J Volcanol Geotherm Res 24:205–248

    Google Scholar 

  • Sparks RSJ, Folkes CB, Humphreys MCS, Barfod DN, Clavero J, Sunagua MC, McNutt SR, Pritchard ME (2008) Uturuncu Volcano, Bolivia: volcanic unrest due to mid-crustal magma intrusion. Am J Sci 308:727–769

    Google Scholar 

  • Steven TA, Ratte JC (1960) Geology and ore deposits of the Summitville District, San Juan Mountains, Colorado. US Geological Survey Professional Paper 70

  • Stimac JA, Wark DA (1992) Plagioclase mantles on sanidine in silicic lavas, Clear-Lake, California—implications for the origin of rapakivi texture. Geol Soc Am Bull 104:728–744

    Google Scholar 

  • Stimac J, Hickmott D, Abell R, Larocque ACL, Broxton D, Gardner J, Chipera S, Wolff J, Gauerke E (1996) Redistribution of Pb and other volatile trace metals during eruption, devitrification, and vapor-phase crystallization of the Bandelier Tuff, New Mexico. J Volcanol Geotherm Res 73:245–266

    Google Scholar 

  • Stix J, Gorton MP (1990) Variations in trace element partition coefficients in sanidine in the Cerro Toledo Rhyolite, Jemez Mountains, New Mexico: effects of composition, temperature, and volatiles. Geochim Cosmochim Acta 54:2697–2708

    Google Scholar 

  • Swanson SE (1977) Relation of nucleation and crystal-growth rate to the development of granitic textures. Am Mineral 62:966–978

    Google Scholar 

  • Tappa MJ, Coleman DS, Mills RD, Samperton KM (2011) The plutonic record of a silicic ignimbrite from the Latir volcanic field, New Mexico. Geochem Geophys Geosyst 12(10):Q10011. doi:10.1029/2011gc003700

    Google Scholar 

  • Thompson RA, Dungan MA (1985) The petrology and geochemistry of the Handkerchief Mesa mixed magma complex, San Juan Mountains, Colorado. J Volcanol Geotherm Res 26:251–274

    Google Scholar 

  • Titus SJ, Clark R, Tikoff B (2005) Geologic and geophysical investigation of two fine-grained granites, Sierra Nevada Batholith, California; evidence for structural controls on emplacement and volcanism. Geol Soc Am Bull 117:1256–1271

    Google Scholar 

  • Vernon RH (1986) K-feldspar megacrysts in granites; phenocrysts, not porphyroblasts. Earth Sci Rev 23:1–63

    Google Scholar 

  • Vernon RH, Paterson SR (2008) How late are K-feldspar megacrysts in granites? Lithos 104:327–336

    Google Scholar 

  • Vigneresse JL, Tikoff B (1999) Strain partitioning during partial melting and crystallizing felsic magmas. Tetonophysics 312:117–132

    Google Scholar 

  • Waldbaum DR, Thompson JB Jr (1969) Mixing properties of sanidine crystalline solutions; IV, phase diagrams from equations of state. Am Mineral 54:1274–1298

    Google Scholar 

  • Watts RB, de Silva SL, Jimenez de Rios G, Croudace I (1999) Effusive eruption of viscous silicic magma triggered and driven by recharge; a case study of the Cerro Chascon–Runto Jarita Dome Complex in Southwest Bolivia. Bull Volcanol 61:241–264

    Google Scholar 

  • Weill DF, Kudo AH (1968) Initial melting in alkali feldspar–plagioclase–quartz systems. Geol Mag 105:325–337

    Google Scholar 

  • Weinberg RF, Sial AN, Pessoa RR (2001) Magma flow within the Tavares Pluton, northeastern Brazil; compositional and thermal convection. Geol Soc Am Bull 113:508–520

    Google Scholar 

  • Westerman DS, Dini A, Innocenti F, Rocchi S (2004) Rise and fall of a nested Christmas-tree laccolith complex, Elba Island, Italy. Geol Soc Spec Publ 234:195–213

    Google Scholar 

  • Whitney JA (1988) The origin of granite; the role and source of water in the evolution of granitic magmas. Geol Soc Am Bull 100:1886–1897

    Google Scholar 

  • Whitney JA, Stormer JC Jr (1985) Mineralogy, petrology, and magmatic conditions from the Fish Canyon Tuff, central San Juan volcanic field, Colorado. J Petrol 26:726–762

    Google Scholar 

  • Williams H, Turner FJ, Gilbert CM (1982) Petrography: an introduction to the study of rock in thin sections. W. H. Freeman, San Francisco

    Google Scholar 

  • Winkler HGF, Schultes H (1982) On the problem of alkali feldspar phenocrysts in granitic rocks. Neues Jahrbuch fuer Mineralogie Monatshefte 12:558–564

    Google Scholar 

Download references

Acknowledgments

This study was supported by National Science Foundation grants 0336070, 0538129, and EAR-1052813 and by student research grants from the Geological Society of America, the University of California’s White Mountain Research Station, and the University of North Carolina at Chapel Hill Martin and Bartlett Funds. The first author was greatly inspired by Ian Carmichael’s career and by his time at UCLA. Jan van Wagtendonk, Peggy Moore, and Greg Stock of Yosemite National Park Service graciously provided logistical support for this work. Daniele Cherniak and Bruce Watson kindly shared their thoughts and data regarding diffusion in feldspars. Calvin Miller, Michael Higgins, Tom Sisson, and Associate Editor Paul Wallace provided thorough and stimulating technical reviews. Thanks to the many people who responded to a query on the granite listserv about occurrences of large K-feldspars and to Barrie Clarke for providing that forum. We thank Bryan Law, John Bartley, Drew Coleman, Ryan Mills, and many others for intellectual and field assistance over the years.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allen F. Glazner.

Additional information

Communicated by G. Moore.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLS 369 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glazner, A.F., Johnson, B.R. Late crystallization of K-feldspar and the paradox of megacrystic granites. Contrib Mineral Petrol 166, 777–799 (2013). https://doi.org/10.1007/s00410-013-0914-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-013-0914-1

Keywords

Navigation