Skip to main content
Log in

Wellposedness and Scattering for Some Bi-inhomogeneous Schrödinger–Choquard Equation with Linear Damping

  • Original Research
  • Published:
Differential Equations and Dynamical Systems Aims and scope Submit manuscript

Abstract

Global existence and scattering are proved for some damped bi-inhomogeneous Schrödinger equation of Choquard type whenever the damping coefficient is large enough. For arbitrary damping, global existence of the solutions is claimed if the initial data belongs to some stable set.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akrivis, G.D., Dougalis, V.A., Karakashian, O.A., Mckinney, W.R.: Numerical Approximation of Singular Solution of the Damped Nonlinear Schrödinger Equation, pp. 117–124. ENUMATH 97 (Heidelberg), World Scientific, River Edge (1998)

    Google Scholar 

  2. Atre, R., Panigrahi, P.K., Agarwal, G.S.: Class of solitary wave solutions of the one-dimensional Gross Pitaevskii equation. Phys. Rev. E. 73, 056611 (2006)

    Article  MathSciNet  Google Scholar 

  3. Barashenkov, I.V., Alexeeva, N.V., Zemlianaya, E.V.: Two and three dimensional oscillons in nonlinear Faraday resonance. Phys. Rev. Lett. 89, 104101 (2002)

    Article  Google Scholar 

  4. Bégout, P., Díaz, J.I.: Finite time extinction for the strongly Damped nonlinear Schrödinger equation in bounded domains. J. Differ. Equ. 268(7), 4029–4058 (2020)

    Article  Google Scholar 

  5. Bonanno, C., d’Avenia, P., Ghimenti, M., Squassina, M.: Soliton dynamics for the generalized Choquard equation. J. Math. Anal. Appl. 417, 180–199 (2014)

    Article  MathSciNet  Google Scholar 

  6. Cao, D.M.: The existence of nontrivial solutions to a generalized Choquard–Pekar equation. Acta Math. Sci. (Chinese) 9(1), 101–112 (1989)

    MathSciNet  Google Scholar 

  7. Carles, R., Antonelli, P., Sparber, C.: On nonlinear Schrödinger type equations with nonlinear damping. Int. Math. Res. Not. 3, 740–762 (2015)

    Google Scholar 

  8. Cazenave, T.: Semilinear Schrödinger Equations. Lecture Notes in Mathematics, vol. 10. New York University, Courant Institute of Mathematical Sciences, New York (2003)

    Google Scholar 

  9. Chen, J., Guo, B.: Strong instability of standing waves for a nonlocal Schrödinger equation. Physica D 227, 142–148 (2007)

    Article  MathSciNet  Google Scholar 

  10. Darwich, M., Molinet, L.: Some remarks on the nonlinear Schrödinger equation with fractional dissipation. J. Math. Phys. 57, 101502 (2015)

    Article  Google Scholar 

  11. Darwich, M.: On the Cauchy problem for the nonlinear Schrödinger equation including fractional dissipation with variable coefficient. Math. Methods Appl. Sci. 41, 2930–2938 (2018)

    Article  MathSciNet  Google Scholar 

  12. Feng, B., Zhao, D., Sun, C.: The limit behavior of solutions for the nonlinear Schródinger equation including nonlinear loss/gain with variable coefficient. J. Math. Anal. Appl. 405, 240–251 (2013)

    Article  MathSciNet  Google Scholar 

  13. Feng, B., Yuan, X.: On the Cauchy problem for the Schrödinger–Hartree equation. Evol. Equ. Control Theory 4(4), 431–445 (2015)

    Article  MathSciNet  Google Scholar 

  14. Fibich, G.: Self-focusing in the damped nonlinear Schrödinger equation. SIAM J. Appl. Math. 61(5), 1680–1705 (2001)

    Article  MathSciNet  Google Scholar 

  15. Genev, H., Venkov, G.: Soliton and blow-up solutions to the time-dependent Schrödinger Hartree equation. Discrete Contin. Dyn. Syst. Ser. S 5, 903–923 (2012)

    MathSciNet  Google Scholar 

  16. Ginibre, J., Velo, G.: On the global Cauchy problem for some non linear Schrödinger equations. Annales de I. H. P. section C tome 1 I(4), 309–323 (1984)

    Google Scholar 

  17. Goldman, M.V., Rypdal, K., Hafizi, B.: Dimensionality and dissipation in Langmuir collapse. Phys. Fluids 23, 945–955 (1980)

    Article  MathSciNet  Google Scholar 

  18. Gross, E.P., Meeron, E.: Physics of Many-Particle Systems, pp. 231–406. Gordon Breach, New York (1966)

    Google Scholar 

  19. Hajaiej, H., Ibrahim, S., Masmoudi, N.: Ground state solutions of the complex Gross Pitaevskii equation associated to exciton-polariton Bose–Einstein condensates. J. de Math. Pures et Appl. 148, 1–23 (2021)

    Article  MathSciNet  Google Scholar 

  20. Lewin, M., Rougerie, N.: Derivation of Pekar’s polarons from a microscopic model of quantum crystal. SIAM J. Math. Anal. 45, 1267–1301 (2013)

    Article  MathSciNet  Google Scholar 

  21. Lieb, E.: Analysis, 2nd ed., Graduate Studies in Mathematics, vol. 14. American Mathematical Society, Providence (2001)

    Google Scholar 

  22. Lions, P.L.: The Choquard equation and related questions. Nonlinear Anal. TMA 4, 1063–1073 (1980)

    Article  MathSciNet  Google Scholar 

  23. Lions, P.L.: Symetrie et compacité dans les espaces de Sobolev. J. Funct. Anal. 49, 315–334 (1982)

    Article  Google Scholar 

  24. Moroz, V., Schaftingen, J.V.: Ground states of nonlinear Choquard equations: existence, qualitative properties and decay asymptotics. J. Funct. Anal. 265, 153–184 (2013)

    Article  MathSciNet  Google Scholar 

  25. Moroz, V., Schaftingen, J.V.: A guide to the Choquard equation. J. Fixed Point Theory Appl. 19, 773–813 (2017)

    Article  MathSciNet  Google Scholar 

  26. Ohta, M., Todorova, G.: Remarks on global existence and blowup for damped non-linear Schrödinger equations. Discrete Contin. Dyn. Syst. 23, 1313–1325 (2009)

    Article  MathSciNet  Google Scholar 

  27. Payne, L.E., Sattinger, D.H.: Saddle points and instability of non-linear hyperbolic equations. Isr. J. Math. 22, 273–303 (1976)

    Article  Google Scholar 

  28. Penrose, R.: Quantum computation, entanglement and state reduction. Philos. Trans. Roy. Soc. 356, 1927–1939 (1998)

    Article  MathSciNet  Google Scholar 

  29. Saanouni, T.: Sharp threshold of global well-posedness vs finite time blow-up for a class of inhomogeneous Choquard equations. J. Math. Phys. 60, 081514 (2019)

    Article  MathSciNet  Google Scholar 

  30. Saanouni, T.: Remarks on damped fractional Schrödinger equation with pure power nonlinearity. J. Math. Phys. 56, 061502 (2015)

    Article  MathSciNet  Google Scholar 

  31. Tsutsumi, M.: Nonexistence of global solutions to the Cauchy problem for the damped nonlinear Schrödinger equations. SIAM J. Math. Anal. 15, 357–366 (1984)

    Article  MathSciNet  Google Scholar 

  32. Tsutsumi, M.: On global solutions to the initial-boundary value problem for the damped nonlinear Schrödinger equations. J. Math. Anal. Appl. 145, 328–341 (1990)

    Article  MathSciNet  Google Scholar 

  33. Wang, T.: Existence and nonexistence of nontrivial solutions for Choquard type equations. Electron. J. Differ. Equ. 3, 1–17 (2016)

    MathSciNet  Google Scholar 

  34. Zhang, Z., Küpper, T., Hu, A., Xia, H.: Existence of a nontrivial solution for Choquard’s equation. Acta Math. Sci. Ser. B Engl. Ed. 26(3), 460–468 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Chergui.

Ethics declarations

Conflict of interest

The author(s) declare none.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

According to [25], see Appendix A, we have the so called Riesz potential inequality.

Lemma 7

Let \(N\ge 1, q>1, 0<\alpha <\frac{N}{q}\) and \(\frac{1}{r}=\frac{1}{q}-\frac{\alpha }{N}\). Then, \(I_\alpha :L^q(\mathbb {R}^N)\rightarrow L^r(\mathbb {R}^N)\) is a bounded operator. Precisely, there exists \(C_{N,\alpha ,q}>0\) such that

$$\begin{aligned} \Vert I_\alpha *f\Vert _r \le C_{N,\alpha ,q}\Vert f\Vert _q. \end{aligned}$$

Proof of Proposition 5

Elementary computations gives

$$\begin{aligned} 0<r<\frac{2N}{N-2}\Leftrightarrow 0<N\Bigg (\frac{1}{2}-\frac{1}{r}\Bigg )<1. \end{aligned}$$

Then

$$\begin{aligned} \Bigg \Vert \int _0^tU_\gamma (t-s)f(s)ds\Bigg \Vert _{L_T^\theta (L^r(|x|<1))}&\lesssim \Bigg \Vert \int _0^t e^{-\gamma (t-s)}U_0(t-s)f(s)ds\Bigg \Vert _{L_T^\theta (L^r(|x|<1))} \\&\lesssim \Bigg \Vert \int _0^T \frac{1}{|t-s|^{\frac{1}{\theta }+\frac{1}{\mu }}}\Vert f(s)\Vert _{r^\prime (|x|<1)} ds\Bigg \Vert _{L_T^\theta }\\&\lesssim \Bigg \Vert \int _0^T I_{\frac{1}{\mu ^\prime }-\frac{1}{\theta }}*\Vert f(s)\Vert _{r^\prime (|x|<1)} ds\Bigg \Vert _{L_T^\theta }. \end{aligned}$$

Applying Lemma 7 with \(d=1\) and taking account of \(\frac{1}{\theta }+\frac{1}{d}(\frac{1}{\mu ^\prime }-\frac{1}{\theta })=\frac{1}{\mu ^\prime }\), we obtain

$$\begin{aligned} \Bigg \Vert \int _0^tU_\gamma (t-s)f(s)ds\Bigg \Vert _{L_T^\theta (L^r(|x|<1))} \lesssim \Vert f\Vert _{L_T^{\mu ^\prime }(L^{r^\prime }(|x|<1))}. \end{aligned}$$

Similarly for integrals on \(|x|>1\).

Proof of Corollary 3

If \(i\dot{u}+\triangle u+i\gamma u=f\) with data \(u_0\), then by using Proposition 3 and standard Strichartz estimates, one gets

$$\begin{aligned} \Vert u\Vert _{L_T^q(L^r)}&\lesssim \Vert U_\gamma (t)u_0\Vert _{L_T^q(L^r)}+ \Bigg \Vert \int _0^tU_\gamma (t-s)f(s)ds\Bigg \Vert _{L_T^q(L^r)}\\&\lesssim \Vert e^{-\gamma t}U_0(t)u_0\Vert _{L_T^q(L^r)}+\Bigg \Vert \int _0^te^{-\gamma (t-s)}U_0(t-s)f(s)ds\Bigg \Vert _{L_T^q(L^r)}\\&\lesssim \Vert e^{-\gamma t}U_0(t)u_0\Vert _{L_T^q(L^r)}+\Bigg \Vert \int _0^tU_0(t-s)(e^{-\gamma (t-s)}f(s))ds\Bigg \Vert _{L_T^q(L^r)} \\&\lesssim \Vert e^{-\gamma t}U_0(t)u_0\Vert _{L_T^q(L^r)}+ \Vert e^{-\gamma (t-s)}f(s)\Vert _{L_T^{\tilde{q}^\prime }(L^{\tilde{r}^\prime })} \\&\lesssim \Vert e^{-\gamma t}\Vert U_0(t)u_0\Vert _r\Vert _{L_T^q}+\Vert e^{-\gamma (t-s)}\Vert f(s)\Vert _{\tilde{r}^\prime }\Vert _{L_T^{\tilde{q}^\prime }} \\&\lesssim \Vert \Vert U_0(t)u_0\Vert _r\Vert _{L_T^q}+\Vert \Vert f\Vert _{\tilde{r}^\prime }\Vert _{L_T^{\tilde{q}^\prime }}\\&\lesssim \Vert U_0(t)u_0\Vert _{L_T^q(L^r)}+\Vert f\Vert _{L_T^{\tilde{q}^\prime }(L^{\tilde{r}^\prime })} \\&\lesssim \Vert u_0\Vert +\Vert f\Vert _{L_T^{\tilde{q}^\prime }(L^{\tilde{r}^\prime })}. \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chergui, L. Wellposedness and Scattering for Some Bi-inhomogeneous Schrödinger–Choquard Equation with Linear Damping. Differ Equ Dyn Syst (2024). https://doi.org/10.1007/s12591-023-00675-6

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12591-023-00675-6

Keywords

Mathematics Subject Classification

Navigation