Skip to main content
Log in

Coupled linear Schrödinger equations: control and stabilization results

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

This article presents some controllability and stabilization results for a system of two coupled linear Schrödinger equations in the one-dimensional case where the state components are interacting through the Kirchhoff boundary conditions. Considering the system in a bounded domain, the null boundary controllability result is shown. The result is achieved thanks to a new Carleman estimate, which ensures a boundary observation. Additionally, this boundary observation together with some trace estimates, helps us to use the Gramian approach, with a suitable choice of feedback law, to prove that the system under consideration decays exponentially to zero at least as fast as the function \(e^{-2\omega t}\) for some \(\omega >0\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

It does not apply to this article as no new data were created or analyzed in this study.

References

  1. Alabau-Boussouira, F.: Indirect boundary observability of a weakly coupled wave system. C. R. Acad. Sci. Paris Sér. I Math. 333, 645–650 (2001)

    MathSciNet  Google Scholar 

  2. Alabau-Boussouira, F.: A two-level energy method for indirect boundary observability and controllability of weakly coupled hyperbolic systems. SIAM J. Control. Optim. 42(3), 871–906 (2003)

    Article  MathSciNet  Google Scholar 

  3. Alabau-Boussouira, F.: On some recent advances on stabilization for hyperbolic equations, Lecture Note in Mathematics/C.I.M.E. Foundation Subseries Control of Partial Differential Equations, vol. 2048. Springer (2012)

  4. Alabau-Boussouira, F.: Controllability of cascade coupled systems of multi-dimensional evolution PDEs by a reduced number of controls. Comptes Rendus Mathématique Sér. I(350), 577–582 (2012)

    Article  MathSciNet  Google Scholar 

  5. Alabau-Boussouira, F.: Insensitizing exact controls for the scalar wave equation and exact controllability of 2-coupled cascade systems of PDEs by a single control. Math. Control Signals Syst. 26, 1–46 (2014)

    Article  MathSciNet  Google Scholar 

  6. Alabau-Boussouira, F.: On the influence of the coupling on the dynamics of single-observed cascade systems of PDE’s. Math. Control Relat. Fields 5, 1–30 (2015)

    Article  MathSciNet  Google Scholar 

  7. Alabau-Boussouira, F., Coron, J.-M., Olive, G.: Internal controllability of first-order quasilinear hyperbolic systems with a reduced number of controls. SIAM J. Control. Optim. 55, 300–323 (2017)

    Article  MathSciNet  Google Scholar 

  8. Alabau-Boussouira, F., Léautaud, M.: Indirect controllability of locally coupled systems under geometric conditions. Comptes Rendus Mathématique Sér. I(349), 395–400 (2011)

    Article  MathSciNet  Google Scholar 

  9. Alabau-Boussouira, F., Léautaud, M.: Indirect controllability of locally coupled wave-type systems and applications. J. Math. Pures Appl. 99, 544–576 (2013)

    Article  MathSciNet  Google Scholar 

  10. Ammar-Khodja, F., Benabdallah, A., González-Burgos, M., de Teresa, L.: Recent results on the controllability of linear coupled parabolic problems: a survey. Math. Control Relat. Fields 1(3), 267–306 (2011)

    Article  MathSciNet  Google Scholar 

  11. Angulo, J., Linares, F.: Periodic pulses of coupled nonlinear Schrödinger equations in optics. Indiana Univ. Math. J. 56(2), 847–878 (2007)

    Article  MathSciNet  Google Scholar 

  12. Barbosa, I.I.: The Cauchy problem for nonlinear quadratic interactions of the Schrödinger type in one-dimensional space. J. Math. Phys. 7, 59 (2018)

    Google Scholar 

  13. Barhoumi, A.: Rapid pointwise stabilization of vibrating strings and beams. Bol. Soc. Paran. de Mat. 27(2), 43–59 (2009)

    MathSciNet  Google Scholar 

  14. Bhandari, K., Boyer, F., Hernández-Santamaría, V.: Boundary null-controllability of 1-D coupled parabolic systems with Kirchhoff-type conditions. Math. Control Signals Syst. 33, 413–471 (2021)

    Article  MathSciNet  Google Scholar 

  15. Baudouin, L., Puel, J.-P.: Uniqueness and stability in an inverse problem for the Schrödinger equation. Inverse Probl. 18, 1537–1554 (2001)

    Article  Google Scholar 

  16. Capistrano-Filho, R.A., Cerpa, E., Gallego, F.: Rapid Exponential Stabilization of a Boussinesq System of KdV-KdV Type. Commun. Contemp. Math. 25(03), 2150111 (2023)

    Article  MathSciNet  Google Scholar 

  17. Cardoulis, L., Gaitan, P.: Simultaneous identification of diffusion coefficient and the potential for the Schrödinger operator with only one observation. Inverse Probl. 26, 541 (2010)

    Article  Google Scholar 

  18. Cerpa, E., Crépeau, E.: Rapid exponential stabilization for a linear Korteweg–de Vries equation. Discrete Contin. Dyn. Syst. Ser. B 11(3), 655–668 (2009)

    MathSciNet  Google Scholar 

  19. Coron, J.-M., Gagnon, L., Morancey, M.: Rapid stabilization of a linearized bilinear 1-D Schrödinger equation. Journal de Mathématiques Pures et Appliquées 115, 24–73 (2018)

    Article  MathSciNet  Google Scholar 

  20. DeSalvo, R., Vanherzeele, H., Hagan, D., Sheik-Bahae, M., Stegeman, G., Van Stryland, E.: Self-focusing and self-defocusing by cascaded second-order effects in KTP. Opt. Lett. 17(1), 28–30 (1992)

    Article  Google Scholar 

  21. Dehman, B., Le-Rousseau, J., Léautaud, M.: Controllability of two coupled wave equations on a compact manifold. Arch. Ration. Mech. Anal. 211(1), 113–187 (2014)

    Article  MathSciNet  Google Scholar 

  22. Dolecki, S., Russell, D.L.: A general theory of observation and control. SIAM J. Control Opt. 15, 185–220 (1977)

    Article  MathSciNet  Google Scholar 

  23. Flandoli, F., Lasiecka, I., Triggiani, R.: Algebraic Riccati equations with non-smoothing observation arising in hyperbolic and Euler-Bernoulli boundary control problems. Ann. Mat. Pura Appl. 153, 307–382 (1988)

    Article  MathSciNet  Google Scholar 

  24. Hayashi, N., Ozawa, T., Tanaka, K.: On a system of nonlinear Schrödinger equations with quadratic interaction. Ann. Inst. Henri Poincare Non-Linear Anal. 30(4), 661–690 (2013)

    Article  Google Scholar 

  25. Jaming, P., Komornik, V.: Moving and oblique observations of beams and plates. Evol. Equ. Control Theory 9(2), 447–468 (2020)

    Article  MathSciNet  Google Scholar 

  26. Karamzin, Y.N., Sukhorukov, A.: Nonlinear interaction of diffracted light beams in a medium with quadratic nonlinearity: mutual focusing of beams and limitation on the efficiency of optical frequency converters. JETP Lett. 20(11), 339–343 (1974)

    Google Scholar 

  27. Kleinman, D.L.: An easy way to stabilize a linear constant system. IEEE Trans. Automat. Control 15, 6 (1970)

    Article  Google Scholar 

  28. Komornik, V.: Rapid boundary stabilization of linear distributed systems. SIAM J. Control. Optim. 35, 1591–1613 (1997)

    Article  MathSciNet  Google Scholar 

  29. Komornik, V., Loreti, P.: Fourier Series in Control Theory. Springer (2005)

    Book  Google Scholar 

  30. Lasiecka, I., Triggiani, R.: \(L_2(\Sigma )\)-regularity of the boundary to boundary operator \(B^*L\) for hyperbolic and Petrowski PDEs. Abstr. Appl. Anal. 19, 1061–1139 (2003)

    Article  Google Scholar 

  31. Lasiecka, I., Triggiani, R., Zhang, X.: Carleman estimates at the \(H^1(\Omega )\)- and \(L^2(\Omega )\)-level for nonconservative Schrödinger equations with unobserved Neumann B.C. Arch. Inequal. Appl. 2, 215–338 (2004)

    MathSciNet  Google Scholar 

  32. Laurent, C.: Internal control of the Schrödinger equation. Math. Control Relat. Fields 4(2), 161–186 (2014)

    Article  MathSciNet  Google Scholar 

  33. Li, C., Hayashi, N.: Recent progress on nonlinear Schrödinger systems with quadratic interactions. Sci. World J. 2014, 214821 (2014)

    Google Scholar 

  34. Lions, J.-L.: Exact controllability, stabilizability, and perturbations for distributed systems. SIAM Rev. 30, 1–68 (1988)

    Article  MathSciNet  Google Scholar 

  35. Lopez-Garcia, M., Mercado, A., de Teresa, L.: Null controllability of a cascade system of Schrödinger equations. Electron. J. Differ. Equ. 2016(74), 1–12 (2016)

    Google Scholar 

  36. Louis-Rose, C., Tebou, L.: Carleman estimates and simultaneous boundary controllability of uncoupled wave equations. Appl. Math. Optim. 88, 49 (2023)

    Article  MathSciNet  Google Scholar 

  37. Lukes, D.L.: Stabilizability and optimal control. Funkcial. Ekvac. 11, 39–50 (1968)

    MathSciNet  Google Scholar 

  38. Menyuk, C., Schiek, R., Torner, L.: Solitary waves due to \(\xi (2)\):\(\xi (2)\) cascading. J. Opt. Soc. Am. B 11(12), 2434–2443 (1994)

    Article  Google Scholar 

  39. Mercado, A., Osses, A., Rosier, L.: Inverse problems for the Schrödinger equation via Carleman inequalities with degenerate weights. Inverse Probl. 24, 1–18 (2008)

    Article  Google Scholar 

  40. Miller, L.: How violent are fast controls for Schrödinger and plate vibrations? Arch. Ration. Mech. Anal. 172, 429–456 (2004)

    Article  MathSciNet  Google Scholar 

  41. Phung, K.-D.: Observability and controllability for Schrödinger equations. SIAM J. Control. Optim. 40, 211–230 (2001)

    Article  MathSciNet  Google Scholar 

  42. Ramdani, K., Takahashi, T., Tenenbaum, G., Tucsnak, M.: A spectral approach for the exact observability of infinite-dimensional systems with skew-adjoint generator. J. Funct. Anal. 226, 193–229 (2005)

    Article  MathSciNet  Google Scholar 

  43. Rosier, L., de Teresa, L.: Exact controllability of a cascade system of conservative equations. C. R. Math. Acad. Sci. Paris Ser. I(349), 291–296 (2011)

    Article  MathSciNet  Google Scholar 

  44. Rosier, L., Zhang, B.-Y.: Local exact controllability and stabilizability of the nonlinear Schrödinger equation on a bounded domain. SIAM J. Control. Optim. 48, 972–992 (2009)

    Article  MathSciNet  Google Scholar 

  45. Rosier, L., Zhang, B.-Y.: Control and Stabilization of the Nonlinear Schrödinger Equation on Rectangles. Math. Models Methods Appl. Sci. 12, 2293–2347 (2010)

    Article  Google Scholar 

  46. Slemrod, M.: A note on complete controllability and stabilizability for linear control systems in Hilbert space. SIAM J. Control 12, 500–508 (1974)

    Article  MathSciNet  Google Scholar 

  47. Tucsnak, M., Weiss, G.: Observation and Control for Operator Semigroups. Springer (2009)

    Book  Google Scholar 

  48. Yuan, G., Yamamoto, M.: Carleman estimates for the Schrödinger equation and applications to an inverse problem and an observability inequality. Chin. Ann. Math. 31(4), 555–578 (2010)

    Article  Google Scholar 

  49. Urquiza, J.M.: Rapid exponential feedback stabilization with unbounded control operators. SIAM J. Control. Optim. 43(6), 2233–2244 (2005)

    Article  MathSciNet  Google Scholar 

  50. Vest, A.: Rapid stabilization in a semigroup framework. SIAM J. Control. Optim. 51(5), 4169–4188 (2013)

    Article  MathSciNet  Google Scholar 

  51. Zuazua, E.: Remarks on the controllability of the Schrödinger equation. In: Quantum Control: Mathematical and Numerical Challenges, CRM Proceedings Lecture Notes, vol. 33, pp. 193–211. American Mathematical Society (2003)

Download references

Acknowledgements

The authors are grateful to the anonymous reviewer for his/her constructive comments and valuable remarks. The work of Kuntal Bhandari was supported by the Czech-Korean project GAČR/22-08633J. Capistrano-Filho was supported by CAPES grants numbers 88881.311964/2018-01 and 88881.520205/2020-01, CNPq grants numbers 307808/2021-1 and 401003/2022-1, MATHAMSUD Grant 21-MATH-03 and Propesqi (UFPE). Subrata Majumdar received financial support from the institute post-doctoral fellowship of IIT Bombay. Part of this work was done while the second author visited Virginia Tech from January to July 2023 and Centro de Modelamiento Matemático (Santiago-Chile) in October 2023. The author thanks both institutions for their warm hospitality.

Author information

Authors and Affiliations

Authors

Contributions

Bhandari, Capistrano-Filho, Majumdar, and Tanaka work equality in Conceptualization; formal analysis; investigation; writing—original draft; writing—review and editing.

Corresponding author

Correspondence to R. de A. Capistrano-Filho.

Ethics declarations

Conflict of interest

This work does not have any Conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A. Auxiliary results

In this first appendix, we briefly discuss the well-posedness of the control system (1.2).

1.1 A.1. Well-posedness results

Consider the following operator associated with the control system (1.2), given by

$$\begin{aligned} \mathcal {A}=\begin{pmatrix} i \gamma _1 \partial _{xx} - i\alpha _1 \mathbb I_d &{} \textbf{0}\\ \\ \textbf{0}&{} i\frac{\gamma _2}{\sigma } \partial _{xx} - i \frac{\alpha _2}{\sigma } \mathbb I_d \end{pmatrix} , \end{aligned}$$
(A.1)

with

$$\begin{aligned} \begin{aligned} \mathcal {D}(\mathcal {A})=\big \{(u_1, u_2)\in [H^2(\Omega )]^2 \mid \,&u_1(0)=u_2(0)=0, \ u_1(1)=u_2(1), \\&\gamma _1 u_{1,x}(1)+\frac{\gamma _2}{\sigma }u_{2,x}(1)+\alpha u_1(1)=0 \big \}. \end{aligned} \end{aligned}$$
(A.2)

With this in hand, the first result shows that the operator in consideration is dissipative.

Proposition A.1

The operator \((\mathcal {A}, \mathcal {D}(\mathcal {A}))\) generates a strongly continuous unitary group in \([L^2(\Omega )]^2\).

Proof

Let us consider \(\textbf{U}=(u,v) \in \mathcal D(\mathcal A)\). A simple computation gives that

$$\begin{aligned} \left<{\mathcal {A}\textbf{U}},{\textbf{U}}\right>_{[L^2(\Omega )]^2}= & {} \text {Re}\bigg [i\gamma _1\mathop {\int }\limits _{0}^{1}u_{xx}\overline{u}dx-i\alpha _1\mathop {\int }\limits _{0}^{1}|u|^2dx+i\frac{\gamma _2}{\sigma }\mathop {\int }\limits _{0}^{1}v_{xx}\overline{v}dx-i\frac{\alpha _2}{\sigma }\mathop {\int }\limits _{0}^{1}|u|^2dx\bigg ]\nonumber \\= & {} \text {Re}\bigg [-i\gamma _1\mathop {\int }\limits _{0}^{1}|u_{x}|^2dx-i\frac{\gamma _2}{\sigma }\mathop {\int }\limits _{0}^{1}|v_{x}|^2dx+i\gamma _1u_x(1)\overline{u(1)}+i\frac{\gamma _2}{\sigma }v_x(1)\overline{v(1)}\bigg ]\nonumber \\= & {} \text {Re}\bigg [i\gamma _1u_x(1)\overline{u(1)}+i\frac{\gamma _2}{\sigma }v_x(1)\overline{v(1)}\bigg ]\nonumber \\ {}= & {} \text {Re}\bigg [-i\alpha |u(1)|^2\bigg ]=0. \end{aligned}$$

By using semigroup theory, \(\mathcal {A}\) generates a strongly continuous unitary group on \([L^2(\Omega )]^2.\) Moreover it can be easily checked that for all \((u,v)\in \mathcal {D}(\mathcal {A})\),

$$\begin{aligned} \left<{\mathcal {A}(u,v)},{(u,v)}\right>_{[L^2(\Omega )]^2}=-\left<{(u,v)},{\mathcal {A}(u,v)}\right>_{[L^2(\Omega )]^2} \end{aligned}$$

and also \(\mathcal {D}(\mathcal {A})=\mathcal {D}(\mathcal {A}^*).\) Therefore \((\mathcal {A}, \mathcal {D}(\mathcal {A}))\) is a skew adjoint operator. \(\square \)

1.2 A.2. Adjoint system

Let us remember that the adjoint associated with the system (1.2) with (1.3)–(1.4a) or (1.3)–(1.4b), is given by (2.4), with given final data \(\zeta :=(\zeta _1, \zeta _2)\) from some suitable Hilbert space. Note that, since \(\mathcal {A}=-\mathcal {A}^*\) we have that \(\mathcal {D(A^*)} = \mathcal {D(A)}\), so, the following result shows the well-posedness for the system (2.4).

Proposition A.2

For given \(\zeta :=(\zeta _1, \zeta _2)\in \mathcal H\), there exists a unique solution \(\varphi :=(\varphi _1, \varphi _2)\in C([0,T]; \mathcal {H})\) to the adjoint system (2.4) such that it satisfies

$$\begin{aligned} \Vert \varphi \Vert _{C([0,T];\mathcal H)} \le C \Vert \zeta \Vert _\mathcal {H} , \end{aligned}$$
(A.3)

for some constant \(C>0\).

Appendix B. Key lemma

This second part of this appendix is devoted to presenting an essential lemma that is a key point in ensuring the hypothesis (H3) in Urquiza’s approach.

Lemma B.1

First, consider a function \(m \in C^2(0,1)\). Then the solution of (2.4) satisfies the following identity:

$$\begin{aligned} \begin{aligned}&\frac{1}{2}\sum _{j=1}^{2}\nu _j\mathop {\int }\limits _{0}^{T}|\varphi _{j,x}(t,0)|^2m(0) dt=\frac{1}{2}\sum _{j=1}^{2}\nu _j\mathop {\int }\limits _{0}^{T}|\varphi _{j,x}(t,1)|^2m(1) dt\\ {}&-\frac{1}{2}\text {Im}\left( \sum _{j=1}^{2} \mathop {\int }\limits _{0}^{1} \overline{\varphi _{j}(T,x)}m(x)\varphi _{j,x}(T,x)dx\right) +\frac{1}{2}\text {Im}\left( \sum _{j=1}^{2} \mathop {\int }\limits _{0}^{1} \overline{\varphi _{j}(0,x)}m(x)\varphi _{j,x}(0,x)dx\right) \\&+\frac{1}{2}\text {Im}\left( \sum _{j=1}^{2} \mathop {\int }\limits _{0}^{T} \varphi _{j,t}(t,1)m(1)\overline{\varphi _{j}(t,1)}dt\right) -\frac{1}{2}\text {Re}\left( \sum _{j=1}^{2} \nu _j \mathop {\int }\limits _{0}^{T}\mathop {\int }\limits _{0}^{1} \varphi _{j,x} m'(x)\overline{\varphi _{j,x}(t,x)}dxdt\right) \\&-\frac{1}{2}\text {Re}\left( \sum _{j=1}^{2} \nu _j \mathop {\int }\limits _{0}^{T}\mathop {\int }\limits _{0}^{1} \varphi _{j,x} m''(x)\overline{\varphi _{j}(t,x)}dxdt\right) +\frac{1}{2}\text {Re}\left( \sum _{j=1}^{2} \nu _j \mathop {\int }\limits _{0}^{T} \varphi _{j,x}(t,1) m'(1)\overline{\varphi _{j}(t,1)}dt\right) ,\\&-\frac{1}{2}\text {Re}\left( \sum _{j=1}^{2} \theta _j \mathop {\int }\limits _{0}^{T} m(1)|{\varphi _{j}(t,1)}|^2dt\right) , \end{aligned} \end{aligned}$$
(B.1)

where \(\nu _1=\gamma _1, \nu _2=\frac{\gamma _2}{\sigma }, \theta _1=\alpha _1, \theta _2=\frac{\alpha _2}{\sigma }\).

Proof

Multiply the equations (2.4) by \((m\overline{\varphi _{1,x}}+\frac{1}{2}\overline{\varphi _1}m')\) and \((m\overline{\varphi _{1,x}}+\frac{1}{2}\overline{\varphi _1}m')\), respectively, and using integration by parts along with boundary conditions, we have

$$\begin{aligned} \begin{aligned} \text {Re}\sum _{j=1}^{2} i \mathop {\int }\limits _{0}^{T}&\mathop {\int }\limits _{0}^{1} \varphi _{j,t}\left( \frac{1}{2}m'(x)\overline{\varphi _{j}(t,x)}+m(x) \overline{\varphi _{j,x}(t,x)}\right) dxdt=\\ {}&-\frac{1}{2}\text {Im}\left( \sum _{j=1}^{2} \mathop {\int }\limits _{0}^{1} \overline{\varphi _{j}(T,x)}m(x)\varphi _{j,x}(T,x)dx\right) \\&+\frac{1}{2}\text {Im}\left( \sum _{j=1}^{2} \mathop {\int }\limits _{0}^{1} \overline{\varphi _{j}(0,x)}m(x)\varphi _{j,x}(0,x)dx\right) \\ {}&+\frac{1}{2}\text {Im}\left( \sum _{j=1}^{2} \mathop {\int }\limits _{0}^{1} \varphi _{j,t}(t,1)m(1)\overline{\varphi _{j}(t,1)}dt\right) . \end{aligned} \end{aligned}$$

Similarly, we have from the second term of both equations:

$$\begin{aligned} \begin{aligned} \text {Re}\sum _{j=1}^{2} \nu _j \mathop {\int }\limits _{0}^{T}\mathop {\int }\limits _{0}^{1} \varphi _{j,xx}&\left( \frac{1}{2}m'(x)\overline{\varphi _{j}(t,x)}+m(x) \overline{\varphi _{j,x}(t,x)}\right) dxdt=\frac{1}{2}\sum _{j=1}^{2}\nu _j\mathop {\int }\limits _{0}^{T}|\varphi _{j,x}(t,1)|^2m(1) dt\\&-\frac{1}{2}\text {Re}\left( \sum _{j=1}^{2} \nu _j \mathop {\int }\limits _{0}^{T}\mathop {\int }\limits _{0}^{1} \varphi _{j,x} m'(x)\overline{\varphi _{j,x}(t,x)}dxdt\right) \\ {}&-\frac{1}{2}\text {Re}\left( \sum _{j=1}^{2} \nu _j \mathop {\int }\limits _{0}^{T}\mathop {\int }\limits _{0}^{1} \varphi _{j,x} m''(x)\overline{\varphi _{j}(t,x)}dxdt\right) \\&+\frac{1}{2}\text {Re}\left( \sum _{j=1}^{2} \nu _j \mathop {\int }\limits _{0}^{T} \varphi _{j,x}(t,1) m'(1)\overline{\varphi _{j}(t,1)}dt\right) -\frac{1}{2}\left( \sum _{j=1}^{2} \nu _j \mathop {\int }\limits _{0}^{T} m(0)|{\varphi _{j,x}(t,0)}|^2dt\right) . \end{aligned} \end{aligned}$$

Also, we have

$$\begin{aligned} \text {Re}\sum _{j=1}^{2} \theta _j \mathop {\int }\limits _{0}^{T}\mathop {\int }\limits _{0}^{1} \varphi _{j}\left( \frac{1}{2}m'(x)\overline{\varphi _{j}(t,x)}+m(x) \overline{\varphi _{j,x}(t,x)}\right) dxdt=\left( \sum _{j=1}^{2} \theta _j \mathop {\int }\limits _{0}^{T} m(1)|{\varphi _{j}(t,1)}|^2dt\right) . \end{aligned}$$

Putting together the previous relation (B.1) holds and the lemma is finished. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhandari, K., Capistrano-Filho, R.d.A., Majumdar, S. et al. Coupled linear Schrödinger equations: control and stabilization results. Z. Angew. Math. Phys. 75, 97 (2024). https://doi.org/10.1007/s00033-024-02242-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-024-02242-7

Keywords

Mathematics Subject Classification

Navigation