Skip to main content
Log in

Linear smoothed finite element method for quasi-incompressible hyperelastic media

  • Published:
International Journal of Advances in Engineering Sciences and Applied Mathematics Aims and scope Submit manuscript

Abstract

This work presents a linear smoothing scheme over high-order triangular elements within the framework of the cell-based strain smoothed finite element method for two-dimensional nonlinear problems. The main idea behind the proposed linear smoothing scheme is that it unlike the classical SFEM, it does not require the subdivision of the finite element cells into smoothing sub-cell. The other features of the classical SFEM are retained, such as: it does not require an explicit form of the derivatives of the basis functions, all the computations are done in the physical space, and the results are less sensitive to mesh distortion. A series of benchmark tests are done to demonstrate the validity and the stability of the proposed scheme. The validity and accuracy are confirmed by comparing the obtained numerical results with the standard FEM using quadratic triangular element and the exact solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Liu, G.R., Dai, K.Y., Nguyen, T.T.: A smoothed finite element method for mechanics problems. Comput. Mech. 39, 859–877 (2007)

    Article  Google Scholar 

  2. Liu, G.R., Nguyen, T.T., Dai, K.Y., Lam, K.Y.: Theoretical aspects of the smoothed finite element method (SFEM). Int. J. Numer. Methods Eng. 71, 902–930 (2007)

    Article  MathSciNet  Google Scholar 

  3. Liu, G.R., Nguyen, T.T.: Smoothed Finite Element Method. CRC Press, Boca Laton (2010)

    Google Scholar 

  4. Nguyen-Xuan, H., Rabczuk, T., Bordas, S.P.A., Debongnie, J.: A smoothed finite element method for plate analysis. Comput. Methods Appl. Mech. Eng. 74, 175–208 (2008)

    MATH  Google Scholar 

  5. Nguyen-Thanh, N., Rabczuk, T., Nguyen-Xuan, H., Bordas, S.P.A.: A smoothed finite element method for shell analysis. Comput. Methods Appl. Mech. Eng. 198, 165–177 (2008)

    Article  Google Scholar 

  6. Lee, C.K., Angela Mihai, L., Hale, J.S., Kerfriden, P., Bordas, S.P.A.: Strain smoothing for compressible and nearly-compressible finite elasticity. Comput. Struct. 182, 540–555 (2017)

    Article  Google Scholar 

  7. Ong, T.H., Heaney, C., Lee, C.K., Liu, G.R., Nguyen-Xuan, H.: On stability, convergence and accuracy of bES-FEM and bFS-FEM for nearly incompressible elasticity. Comput. Methods Appl. Mech. Eng. 285, 315–345 (2014)

    Article  MathSciNet  Google Scholar 

  8. Bordas, S.P.A., Natarajan, S., Kerfriden, P., Augarde, C., Roy Mahapatra, D., Rabczuk, T., Dal Pont, S.: On the performance of strain smoothing for quadratic and enriched finite element approximations (XFEM/GFEM/PUFEM). Int. J. Numer. Methods Eng. 86, 637–666 (2011)

    Article  Google Scholar 

  9. Bordas, S.P.A., Rabczuk, T., Nugyen-Xuan, H., Nguyen, V.P., Natarajan, S., Bog, T., Quan, D.M., Hiep, N.V.: Strain smoothing in FEM and XFEM. Comput. Struct. 88, 1419–1443 (2010)

    Article  Google Scholar 

  10. Jiang, C., Zhang, Z.Q., Hang, X., Liu, G.R.: Selective smoothed finite element methods for extremely large deformation of anisotropic incompressible bio-tissues. Int. J. Numer. Methods Eng. 99, 587–610 (2014)

    Article  MathSciNet  Google Scholar 

  11. Natarajan, S., Bordas, S.P.A., Ooi, E.T.: Virtual and smoothed finite elements: a connection and its application to polygonal/polyhedral finite element method. Int. J. Numer. Methods Eng. 104, 1173–1199 (2015)

    Article  MathSciNet  Google Scholar 

  12. Natarajan, S., Ooi, E.T., Chiong, I., Song, C.: Convergence and accuracy of displacement based finite element formulation over arbitrary polygons: Laplace interpolants, strain smoothing and scaled boundary polygon formulations. Finite Elem. Anal. Des. 85, 101–122 (2014)

    Article  MathSciNet  Google Scholar 

  13. Francis, A., Ortiz-Bernardin, A., Bordas, S.P.A., Natarajan, S.: Linear smoothed polygonal and polyhedral finite elements. Int. J. Numer. Methods Eng. 109, 1263–1288 (2017)

    Article  MathSciNet  Google Scholar 

  14. Duan, Q., Li, X., Zhang, H., Belytschko, T.: Second-order accurate derivatives and integration schemes for meshfree method. Int. J. Numer. Methods Eng. 92, 399–424 (2012)

    Article  MathSciNet  Google Scholar 

  15. Rand, A., Gillette, A., Bajaj, C.L.: Quadratic serendipity finite elements on polygons using generalized barycentric coordinates. Mathem. Comput. 83, 2691–2716 (2014)

    Article  MathSciNet  Google Scholar 

  16. Lee, C.K.: Gradient smoothing in finite elasticity: near-incompressibility. PhD Thesis, Cardiff University (2015)

  17. Belytschko, T., Moran, B., Liu, W.K.: Nonlinear Finite Element for Continua and Structures. John Wiley & Sons Ltd, Chichester (2000)

    MATH  Google Scholar 

Download references

Acknowledgements

Changkye Lee would like to thank the support by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education (2016R1A6A1A03012812).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changkye Lee.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 The smoothed strain–displacement matrix

The following discrete trial and test functions are given using Lagrangian shape functions \(\varPsi _I\) at node I:

$$\begin{aligned} {\mathbf {u}}^{\mathrm {h}}\left( {\mathbf {x}}\right) =\sum _{I=1}^N{u_I\varPsi _I\left( {\mathbf {x}}\right) },\quad {\mathbf {v}}^{\mathrm {h}}\left( {\mathbf {x}}\right) =\sum _{I=1}^N{u_I\varPsi _I\left( {\mathbf {x}}\right) } \end{aligned}$$
(37)

Thus, from the smoothed strain of Eq. (4), the smoothed strain–displacement matrix for 2D can be evaluated as:

$$\begin{aligned} \bar{\mathbf {B}}_I\left( {\mathbf {x}}\right) =\dfrac{1}{A_k^s}\int _{\varGamma _K^s}{{\mathbf {n}}\left( {\mathbf {x}}\right) \varPsi _I{\mathrm {d}}\varGamma }= \left[ \begin{array}{cc} \bar{B}_{I1}&{}\quad 0\\ 0&{}\quad \bar{B}_{I2}\\ \bar{B}_{I2}&{}\quad \bar{B}_{I1} \end{array}\right] \end{aligned}$$
(38)

where \(\bar{B}_{Ii}\) is given as:

$$\begin{aligned} \bar{B}_{Ii}=\dfrac{1}{A_k^s}\int _{\varGamma _k^s}{\psi _I\left( {\mathbf {x}}\right) n_i\left( {\mathbf {x}}\right) {\mathrm {d}}\varGamma } \end{aligned}$$
(39)

1.2 Consistency of the nodal derivatives

For linear smoothing approximation, as given in Eq. (16), the approximation consistency is given as [14]:

$$\begin{aligned} \sum _I{\varPsi _I\left( {\mathbf {x}}\right) }=1,\quad \sum _I{\varPsi _I\left( {\mathbf {x}}\right) X_I}=x,\quad \sum _I{\varPsi _I\left( {\mathbf {x}}\right) Y_I}=y \end{aligned}$$
(40)

where the sampling point \({\mathbf {x}}=\left[ x,y\right] \).

Equation (40) can be reproduced as:

$$\begin{aligned} f\left( {\mathbf {x}}\right) =\sum _I{\varPsi _I\left( {\mathbf {x}}\right) f\left( {\mathbf {x}}_I\right) } \end{aligned}$$
(41)

Therefore, Eq. (41) can be rewritten by taking spatial derivatives:

$$\begin{aligned} f_{,i}\left( {\mathbf {x}}\right) =\sum _I{f\left( {\mathbf {x}}_I\right) \varPsi _{I,a}\left( {\mathbf {x}}\right) } \end{aligned}$$
(42)

which can be extended as:

$$\begin{aligned} \sum _I\varPsi _{I,1}\left( {\mathbf {x}}\right) =0,\quad \sum _I\varPsi _{I,1}\left( {\mathbf {x}}\right) X_I=1,\quad \sum _I\varPsi _{I,1}\left( {\mathbf {x}}\right) Y_I=0 \end{aligned}$$
(43)

for \(\varPsi _{I,1}\) and

$$\begin{aligned} \sum _I\varPsi _{I,2}\left( {\mathbf {x}}\right) =0,\quad \sum _I\varPsi _{I,2}\left( {\mathbf {x}}\right) X_I=0,\quad \sum _I\varPsi _{I,2}\left( {\mathbf {x}}\right) Y_I=1 \end{aligned}$$
(44)

for \(\varPsi _{I,2}\). Note that, the shape functions \(\varPsi _I\left( {\mathbf {x}}\right) \) need to meet a consistency condition with their derivatives \(\varPsi _{I,i}\left( {\mathbf {x}}\right) \) in terms of the divergence theorem. Therefore, the divergence consistency is expressed as:

$$\begin{aligned} \int _{\varOmega _S}{\varPsi _{I,i}\left( {\mathbf {x}}\right) f\left( {\mathbf {x}}\right) {\mathrm {d}}\varOmega }= & {} \int _{\varGamma _S}{\varPsi _I\left( {\mathbf {x}}\right) f\left( {\mathbf {x}}\right) n_i{\mathrm {d}}\varGamma }\nonumber \\&- \int _{\varOmega _S}{\varPsi _I\left( {\mathbf {x}}\right) f_{,i}\left( {\mathbf {x}}\right) {\mathrm {d}}\varOmega } \end{aligned}$$
(45)

where \(\varOmega _S\) and \(\varGamma _S\) are sub-domain and the boundaries of sub-domain under the control of the shape functions \(\varPsi _I\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, C., Natarajan, S. Linear smoothed finite element method for quasi-incompressible hyperelastic media. Int J Adv Eng Sci Appl Math 12, 158–170 (2020). https://doi.org/10.1007/s12572-020-00276-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12572-020-00276-4

Keywords

Navigation