Skip to main content
Log in

A Smoothed Finite Element Method for Mechanics Problems

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

In the finite element method (FEM), a necessary condition for a four-node isoparametric element is that no interior angle is greater than 180° and the positivity of Jacobian determinant should be ensured in numerical implementation. In this paper, we incorporate cell-wise strain smoothing operations into conventional finite elements and propose the smoothed finite element method (SFEM) for 2D elastic problems. It is found that a quadrilateral element divided into four smoothing cells can avoid spurious modes and gives stable results for integration over the element. Compared with original FEM, the SFEM achieves more accurate results and generally higher convergence rate in energy without increasing computational cost. More importantly, as no mapping or coordinate transformation is involved in the SFEM, its element is allowed to be of arbitrary shape. Hence the restriction on the shape bilinear isoparametric elements can be removed and problem domain can be discretized in more flexible ways, as demonstrated in the example problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bathe KJ (1996) Finite element procedures. Prentice Hall, New Jersey

    Google Scholar 

  2. Beissel S, Belytschko T (1996) Nodal integration of the element - free Galerkin method. Comput Meth Appl Mech Eng 139:49–74

    Article  MATH  MathSciNet  Google Scholar 

  3. Belytschko T, Lu YY, Gu L (1994) Element-free Galerkin methods. Int J Numer Method Eng 37:229–256

    Article  MATH  MathSciNet  Google Scholar 

  4. Belytschko T, Krongauz Y, Organ D, Fleming M, Krysl P (1996) Meshless Method: An Overview and Recent Developments. Comput Meth Appl Mech Eng 139:3–47

    Article  MATH  Google Scholar 

  5. Bonet J, Kulasegaram S (1999) Correction and stabilization of smooth particle hydrodynamics methods with applications in metal forming simulation. Int J Numer Method Eng 47:1189–1214

    Article  Google Scholar 

  6. Chen JS, Wu CT, Belytschko T (2000) Regularization of material instabilities by meshfree approximations with intrinsic length scales. Int J Numer Method Eng 47:1303–1322

    Article  MATH  Google Scholar 

  7. Chen JS, Wu CT, Yoon S, You Y (2001) A stabilized conforming nodal integration for Galerkin meshfree method. Int J Numer Method Eng 50:435–466

    Article  MATH  Google Scholar 

  8. Dai KY, Liu GR, Lim KM, Gu YT (2003) Comparison between the radial point interpolation and the Kriging based interpolation used in mesh-free methods. Comput Mech 32:60–70

    Article  MATH  Google Scholar 

  9. Krongauz Y, Belytschko T (1997) Consistent pseudo-derivatives in meshless method. Int J Numer Method Eng 146:371–386

    MATH  MathSciNet  Google Scholar 

  10. Li Y, Liu GR, Luan MT, Dai KY, Zhong ZH, Li GY, Han X (2006) Contact analysis for solids based on linearly conforming RPIM. Comput Mech (in press)

  11. Liu GR (2002) Mesh-free methods: moving beyond the finite element method. CRC Press, Boca Raton

    Google Scholar 

  12. Liu GR, Li Y, Dai KY, Luan MT, Xue W (2006a) A linearly conforming RPIM for 2D solid mechanics. Int J Comput Methods (in press)

  13. Liu GR, Quek SS (2003) The finite element method: a practical course. Butterworth Heinemann, Oxford

    MATH  Google Scholar 

  14. Liu GR, Zhang GY, Dai KY, Wang YY, Zhong ZH, Li G, Han X (2006b) A linearly conforming point interpolation method (LC-PIM) for 2D solid mechanics problems. Int J Comput Methods (in press)

  15. Liu WK, Jun S, Zhang YF (1995) Reproducing kernel particle methods. Int J Numer Method Eng 20:1081–1106

    MATH  MathSciNet  Google Scholar 

  16. Monaghan JJ (1982) Why particle methods work. Siam J Sci Sat Comput 3(4):423–433

    MathSciNet  Google Scholar 

  17. Sukumar N (2004) Construction of polygonal interpolants: a maximum entropy approach. Int J Numer Method Eng 61:2159–2181

    Article  MATH  MathSciNet  Google Scholar 

  18. Sukumar N, Moran B (1999) C 1 natural neighbor interpolation for partial differential equations. Numer Methods Partial Differential Equations 15:417

    Article  MATH  MathSciNet  Google Scholar 

  19. Sukumar N, Moran B, Belytschko T (1998) The natural element method in solid mechanics. Int J Numer Method Eng 43:839–887

    Article  MATH  MathSciNet  Google Scholar 

  20. Sukumar N, Tabarraei (2004) Conforming polygonal finite elements. Int J Numer Method Eng 61:2045–2066

    Article  MATH  MathSciNet  Google Scholar 

  21. Timoshenko SP, Goodier JN (1970) Theory of elasticity, 3rd edn. McGraw-Hill, New York

    MATH  Google Scholar 

  22. Wang JG, Liu GR (2002) A point interpolation meshless method based on radial basis functions. Int J Numer Method Eng 54:1623–1648

    Article  MATH  Google Scholar 

  23. Yoo JW, Moran B, Chen JS (2004) Stabilized conforming nodal integration in the natural-element method. Int J Numer Method Eng 60:861–890

    Article  MATH  Google Scholar 

  24. Zienkiewicz OC, Taylor RL (2000) The finite element method, 5th edn. Butterworth Heinemann, Oxford

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Y. Dai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, G.R., Dai, K.Y. & Nguyen, T.T. A Smoothed Finite Element Method for Mechanics Problems. Comput Mech 39, 859–877 (2007). https://doi.org/10.1007/s00466-006-0075-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-006-0075-4

Keywords

Navigation