Skip to main content
Log in

Polyhedral elements using an edge-based smoothed finite element method for nonlinear elastic deformations of compressible and nearly incompressible materials

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

Polyhedral elements with an arbitrary number of nodes or non-planar faces, obtained with an edge-based smoothed finite element method, retain good geometric adaptability and accuracy in solution. This work is intended to extend the polyhedral elements to nonlinear elastic analysis with finite deformations. In order to overcome the volumetric locking problem, a smoothing domain-based selective smoothed finite element method scheme and a three-field-mixed cell-based smoothed finite element method with nodal cells were developed. Using several numerical examples, their performance and the accuracy of their solutions were examined, and their effectiveness for practical applications was demonstrated as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

Abbreviations

FEM:

Finite element method

S-FEM:

Smoothed finite element method

CS-FEM:

Cell-based smoothed finite element method

CS-FEM-FC:

Facial cell-based smoothed finite element method

CS-FEM-ND:

Nodal cell-based smoothed finite element method

NS-FEM:

Node-based smoothed finite element method

ES-FEM:

Edge-based smoothed finite element method

FS-FEM:

Face-based smoothed finite element method

ES/CS(EL)-FEM:

Smoothing domain-based selective edge/elemental cell-based smoothed finite element method

ES/NS-FEM:

Smoothing domain-based selective edge/node-based smoothed finite element method

MX CS-FEM-ND:

Nodal cell-based smoothed finite element method with three field mixed formulation

References

  1. Tabarraei A, Sukumar N (2006) Application of polygonal finite elements in linear elasticity. Int J Comput Methods 3(4):503–520. doi:10.1142/s021987620600117x

    Article  MATH  MathSciNet  Google Scholar 

  2. Ghosh S, Moorthy S (2004) Three dimensional Voronoi cell finite element model for microstructures with ellipsoidal heterogeneties. Comput Mech 34(6):510–531. doi:10.1007/s00466-004-0598-5

    Article  MATH  Google Scholar 

  3. Chi H, Talischi C, Lopez-Pamies O, Paulino GH (2015) Polygonal finite elements for finite elasticity. Int J Numer Methods Eng 101(4):305–328. doi:10.1002/nme.4802

    Article  MATH  MathSciNet  Google Scholar 

  4. Talischi C, Paulino GH, Le CH (2009) Honeycomb Wachspress finite elements for structural topology optimization. Struct Multidiscip Optim 37(6):569–583. doi:10.1007/s00158-008-0261-4

    Article  MATH  MathSciNet  Google Scholar 

  5. Gain AL, Paulino GH, DuartE LS, Menezes IFM (2015) Topology optimization using polytopes. Comput Methods Appl Mech Eng 293:411–430. doi:10.1016/j.cma.2015.05.007

    Article  MathSciNet  Google Scholar 

  6. Wachspress EL (1975) A rational finite element basis. Academic Press, New York

    MATH  Google Scholar 

  7. Christ NH, Friedberg R, Lee TD (1982) Weights of links and plaquettes in a random lattice. Nucl Phys B 210(3):337–346. doi:10.1016/0550-3213(82)90124-9

    Article  MathSciNet  Google Scholar 

  8. Sukumar N, Tabarraei A (2004) Conforming polygonal finite elements. Int J Numer Methods Eng 61(12):2045–2066

    Article  MATH  MathSciNet  Google Scholar 

  9. Floater MS (2003) Mean value coordinates. Comput Aided Geom Des 20(1):19–27. doi:10.1016/s0167-8396(03)00002-5

    Article  MATH  MathSciNet  Google Scholar 

  10. Floater MS, Kos G, Reimers M (2005) Mean value coordinates in 3D. Comput Aided Geom Des 22(7):623–631. doi:10.1016/j.cagd.2005.06.004

    Article  MATH  MathSciNet  Google Scholar 

  11. Sukumar N (2004) Construction of polygonal interpolants: a maximum entropy approach. Int J Numer Methods Eng 61(12):2159–2181. doi:10.1002/nme.1193

    Article  MATH  MathSciNet  Google Scholar 

  12. Hormann K, Sukumar N (2008) Maximum entropy coordinates for arbitrary polytopes. Comput Graph Forum 27(5):1513–1520. doi:10.1111/j.1467-8659.2008.01292.x

    Article  Google Scholar 

  13. Martin S, Kaufmann P, Botsch M, Wicke M, Gross M (2008) Polyhedral finite elements using harmonic basis functions. Comput Graph Forum 27(5):1521–1529

    Article  Google Scholar 

  14. Bishop JE (2013) A displacement-based finite element formulation for general polyhedra using harmonic shape functions. Int J Numer Methods Eng 97(1):1–31. doi:10.1002/nme.4562

    Article  MATH  MathSciNet  Google Scholar 

  15. da Veiga LB, Brezzi F, Cangiani A, Manzini G, Marini LD, Russo A (2013) Basic principles of virtual element methods. Math Model Methods Appl Sci 23(1):199–214

    Article  MATH  MathSciNet  Google Scholar 

  16. da Veiga LB, Brezzi F, Marini LD (2013) Virtual elements for linear elasticity problems. SIAM J Numer Anal 51(2):794–812

    Article  MATH  MathSciNet  Google Scholar 

  17. Gain AL, Talischi C, Paulino GH (2014) On the virtual element method for three-dimensional linear elasticity problems on arbitrary polyhedral meshes. Comput Methods Appl Mech Eng 282:132–160. doi:10.1016/j.cma.2014.05.005

    Article  MathSciNet  Google Scholar 

  18. Sohn D, Han J, Cho YS, Im S (2013) A finite element scheme with the aid of a new carving technique combined with smoothed integration. Comput Methods Appl Mech Eng 254:42–60. doi:10.1016/j.cma.2012.10.014

    Article  MATH  MathSciNet  Google Scholar 

  19. Sohn D, Jin S (2015) Polyhedral elements with strain smoothing for coupling hexahedral meshes at arbitrary nonmatching interfaces. Comput Methods Appl Mech Eng 293:92–113. doi:10.1016/j.cma.2015.04.007

    Article  MathSciNet  Google Scholar 

  20. Lee C, Kim H, Im S (2016) Polyhedral elements by means of node/edge-based smoothed finite element method. Int J Numer Methods Eng. doi:10.1002/nme.5449

    Google Scholar 

  21. Liu GR, Dai KY, Nguyen TT (2007) A smoothed finite element method for mechanics problems. Comput Mech 39(6):859–877. doi:10.1007/s00466-006-0075-4

    Article  MATH  Google Scholar 

  22. Dai KY, Liu GR, Nguyen TT (2007) An n-sided polygonal smoothed finite element method (nSFEM) for solid mechanics. Finite Elem Anal Des 43(11–12):847–860. doi:10.1016/j.finel.2007.05.009

    Article  MathSciNet  Google Scholar 

  23. Nguyen-Xuan H, Nguyen HV, Bordas S, Rabczuk T, Duflot M (2012) A cell-based smoothed finite element method for three dimensional solid structures. KSCE J Civ Eng 16(7):1230–1242. doi:10.1007/s12205-012-1515-7

    Article  Google Scholar 

  24. Cui XY, Li GY, Liu GR (2013) An explicit smoothed finite element method (SFEM) for elastic dynamic problems. Int J Comput Methods 10(1):16. doi:10.1142/s0219876213400021

    Article  MATH  MathSciNet  Google Scholar 

  25. Liu GR, Nguyen-Thoi T, Nguyen-Xuan H, Lam KY (2009) A node-based smoothed finite element method (NS-FEM) for upper bound solutions to solid mechanics problems. Comput Struct 87(1–2):14–26. doi:10.1016/j.compstruc.2008.09.003

    Article  Google Scholar 

  26. Nguyen-Thoi T, Liu GR, Nguyen-Xuan H (2009) Additional properties of the node-based smoothed finite element method (NS-FEM) for solid mechanics problems. Int J Comput Methods 6(4):633–666. doi:10.1142/s0219876209001954

    Article  MATH  MathSciNet  Google Scholar 

  27. Liu GR, Nguyen-Thoi T, Lam KY (2009) An edge-based smoothed finite element method (ES-FEM) for static, free and forced vibration analyses of solids. J Sound Vibr 320(4–5):1100–1130. doi:10.1016/j.jsv.2008.08.027

    Article  Google Scholar 

  28. Nguyen-Thoi T, Liu GR, Nguyen-Xuan H (2011) An n-sided polygonal edge-based smoothed finite element method (nES-FEM) for solid mechanics. Int J Numer Methods Biomed 27(9):1446–1472. doi:10.1002/cnm.1375

    MATH  MathSciNet  Google Scholar 

  29. He ZC, Li GY, Zhong ZH, Cheng AG, Zhang GY, Liu GR, Li E, Zhou Z (2013) An edge-based smoothed tetrahedron finite element method (ES-T-FEM) for 3D static and dynamic problems. Comput Mech 52(1):221–236. doi:10.1007/s00466-012-0809-4

    Article  MATH  MathSciNet  Google Scholar 

  30. Nguyen-Thoi T, Liu GR, Lam KY, Zhang GY (2009) A face-based smoothed finite element method (FS-FEM) for 3D linear and geometrically non-linear solid mechanics problems using 4-node tetrahedral elements. Int J Numer Methods Eng 78(3):324–353. doi:10.1002/nme.2491

    Article  MATH  MathSciNet  Google Scholar 

  31. Onishi Y, Amaya K (2014) A locking-free selective smoothed finite element method using tetrahedral and triangular elements with adaptive mesh rezoning for large deformation problems. Int J Numer Methods Eng 99(5):354–371

    Article  MATH  MathSciNet  Google Scholar 

  32. Jiang C, Zhang Z-Q, Han X, Liu G-R (2014) Selective smoothed finite element methods for extremely large deformation of anisotropic incompressible bio-tissues. Int J Numer Methods Eng 99(8):587–610. doi:10.1002/nme.4694

    Article  MATH  MathSciNet  Google Scholar 

  33. Jin S, Sohn D, Im S (2016) Node-to-node scheme for three-dimensional contact mechanics using polyhedral type variable-node elements. Comput Methods Appl Mech Eng 304:217–242. doi:10.1016/j.cma.2016.02.019

    Article  MathSciNet  Google Scholar 

  34. Lee K, Son Y, Im S (2015) Three-dimensional variable-node elements based upon CS-FEM for elastic–plastic analysis. Comput Struct 158:308–332. doi:10.1016/j.compstruc.2015.06.005

    Article  Google Scholar 

  35. Malkus DS, Hughes TJR (1978) Mixed finite-element methods—reduced and selective integration techniques—unification of concepts. Comput Methods Appl Mech Eng 15(1):63–81. doi:10.1016/0045-7825(78)90005-1

    Article  MATH  Google Scholar 

  36. Hughes TJR (1980) Generalization of selective integration procedures to anisotropic and non-linear media. Int J Numer Methods Eng 15(9):1413–1418. doi:10.1002/nme.1620150914

    Article  MATH  Google Scholar 

  37. Moran B, Ortiz M, Shih CF (1990) Formulation of implicit finite-element methods for multiplicative finite deformation plasticity. Int J Numer Methods Eng 29(3):483–514. doi:10.1002/nme.1620290304

    Article  MATH  MathSciNet  Google Scholar 

  38. deSouzaNeto EA, Peric D, Dutko M, Owen DRJ (1996) Design of simple low order finite elements for large strain analysis of nearly incompressible solids. Int J Solids Struct 33(20–22):3277–3296. doi:10.1016/0020-7683(95)00259-6

    Article  MATH  MathSciNet  Google Scholar 

  39. de Souza Neto EA, Pires FMA, Owen DRJ (2005) F-bar-based linear triangles and tetrahedra for finite strain analysis of nearly incompressible solids. Part I: formulation and benchmarking. Int J Numer Methods Eng 62(3):353–383. doi:10.1002/nme.1187

    Article  MATH  Google Scholar 

  40. Elguedj T, Bazilevs Y, Calo VM, Hughes TJR (2008) (B)over-bar and (F)over-bar projection methods for nearly incompressible linear and non-linear elasticity and plasticity using higher-order NURBS elements. Comput Methods Appl Mech Eng 197(33–40):2732–2762. doi:10.1016/j.cma.2008.01.012

    Article  MATH  Google Scholar 

  41. Simo JC, Taylor RL, Pister KS (1985) Variational and projection methods for the volume constraint in finite deformation elasto-plasticity. Comput Methods Appl Mech Eng 51(1–3):177–208. doi:10.1016/0045-7825(85)90033-7

    Article  MATH  MathSciNet  Google Scholar 

  42. Simo JC, Taylor RL (1991) Quasi-incompressible finite elasticity in principal stretches—continuum basis and numerical algorithms. Comput Methods Appl Mech Eng 85(3):273–310. doi:10.1016/0045-7825(91)90100-k

    Article  MATH  MathSciNet  Google Scholar 

  43. Zienkiewicz OC, Taylor RL, Fox DD (2013) The finite element method for solid and structural mechanics, 7th edn. Elsevier, Butterworth-Heinemann

    MATH  Google Scholar 

  44. Simo JC, Rifai MS (1990) A class of mixed assumed strain methods and the method of incompatible modes. Int J Numer Methods Eng 29(8):1595–1638. doi:10.1002/nme.1620290802

    Article  MATH  MathSciNet  Google Scholar 

  45. Simo JC, Armero F (1992) Geometrically nonlinear enhanced strain mixed methods and the method of incompatible modes. Int J Numer Methods Eng 33(7):1413–1449. doi:10.1002/nme.1620330705

    Article  MATH  MathSciNet  Google Scholar 

  46. Taylor RL (2011) Isogeometric analysis of nearly incompressible solids. Int J Numer Methods Eng 87(1–5):273–288. doi:10.1002/nme.3048

    Article  MATH  MathSciNet  Google Scholar 

  47. Liu J, Zhang Z-Q, Zhang G (2015) A smoothed finite element method (S-FEM) for large-deformation elastoplastic analysis. Int J Comput Methods. doi:10.1142/s0219876215400113

    MATH  MathSciNet  Google Scholar 

  48. Onishi Y, Iida R, Amaya K (2016) F-bar aided edge-based smoothed finite element method using tetrahedral elements for finite deformation analysis of nearly incompressible solids. Int J Numer Methods Eng 109(11):1582–1606. doi:10.1002/nme.5337

    Article  MathSciNet  Google Scholar 

  49. Chen JS, Yoon SP, Wu CT (2002) Non-linear version of stabilized conforming nodal integration for Galerkin mesh-free methods. Int J Numer Methods Eng 53(12):2587–2615

    Article  MATH  Google Scholar 

  50. Belytschko T, Liu WK, Moran B (2000) Nonlinear finite elements for continua and structures. Wiley, New York

    MATH  Google Scholar 

  51. Reese S, Wriggers P, Reddy BD (2000) A new locking-free brick element technique for large deformation problems in elasticity. Comput Struct 75(3):291–304. doi:10.1016/s0045-7949(99)00137-6

  52. Puso M, Chen J, Zywicz E, Elmer W (2008) Meshfree and finite element nodal integration methods. Int J Numer Methods Eng 74:416–446. doi:10.1002/nme2181

    Article  MATH  MathSciNet  Google Scholar 

  53. Zhang Z-Q, Liu G (2014) Solution bound and nearly exact solution to nonlinear solid mechanics problems based on the smoothed FEM concept. Eng Anal Bound Elem 42:99–114. doi:10.1016/j.enganabound.2014.02.003

    Article  MATH  MathSciNet  Google Scholar 

  54. Simo JC, Hughes TJ (2006) Computational inelasticity. Springer, Berlin

    MATH  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the grant from the National Research Foundation of Korea (Grant No. K2015R1A2A1A15056263) in the course of this study. Kind suggestions and comments of Professor Dongwoo Sohn of the Department of Mechanical Engineering, Korea Maritime and Ocean University are sincerely appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyoung Im.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, C., Kim, H., Kim, J. et al. Polyhedral elements using an edge-based smoothed finite element method for nonlinear elastic deformations of compressible and nearly incompressible materials. Comput Mech 60, 659–682 (2017). https://doi.org/10.1007/s00466-017-1433-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-017-1433-0

Keywords

Navigation