Skip to main content
Log in

Distribution of Boron in 9.5Cr–1.5MoCoVNbNB Martensitic Heat-Resistant Steel Studied by Secondary Ion Mass Spectroscopy and atom Probe Tomography

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

9.5Cr–1.5MoCoVNbNB heat-resistant steel has been designed for use at 620 ℃ in ultra-supercritical power plants and has been acknowledged as the most promising martensitic heat-resistant steel for turbine rotors. With the addition of 100 ppm B, the resulting precipitates and inclusions endow the steel with improved properties. However, the direct observation and quantitative analysis of B distribution in 9.5Cr–1.5MoCoVNbNB heat-resistant steel are lacking. Herein, the distribution of B in 9.5Cr–1.5MoCoVNbNB heat-resistant steel was analyzed. The results of secondary ion mass spectroscopy (SIMS) revealed that B segregated at the boundaries after tempering, and those of atom probe tomography (APT) revealed that B atoms were evenly distributed in M23C6 carbide particles during aging at 620 ℃. The coarsening of M23C6 carbides was found to be a process of alloy element redistribution. The BN inclusions might be detrimental during the tensile rupture fracture because the fish-eye fracture mode was observed. Cavity coalescence mainly occurs around type-B dimples (without BN particles).

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. K. Yagi, F. Abe, Creep-resistant Steels, in Encyclopedia of Materials: Science and Technology, 2nd edn., ed. by K.H. Jürgen Buschow et. al (Pergamon, Oxford, 2001). https://doi.org/10.1016/B0-08-043152-6/00335-1

  2. A. Fedoseeva, N. Dudova, R. Kaibyshev, Creep strength break down and microstructure evolution in a 3%Co modified P92 steel. Mater. Sci. Eng. A 654, 1–12 (2016). https://doi.org/10.1016/j.msea.2015.12.027

    Article  CAS  Google Scholar 

  3. M.M. Li, W.Y. Chen, Microstructure-based prediction of thermal aging strength reduction factors for grade 91ferritic-martensitic steel. Mater. Sci. Eng. A 798, 140116 (2020). https://doi.org/10.1016/j.msea.2020.140116

    Article  CAS  Google Scholar 

  4. D. Rojas, J. Garcia, O. Prat, G. Sauthoff, A.R. Kaysser-Pyzalla, 9%Cr heat resistant steels: alloy design, microstructure evolution and creep response at 650 °C. Mater. Sci. Eng A 528, 5164–5176 (2011). https://doi.org/10.1016/j.msea.2011.03.037

    Article  CAS  Google Scholar 

  5. R. Viswanathan, W. Bakker, Materials for ultrasupercritical coal power plants: turbine materials: part II. J. Mater. Eng. Perform. 10, 96–101 (2001). https://doi.org/10.1361/105994901770345402

    Article  CAS  Google Scholar 

  6. Y.Q. Zhang, J.F. Gu, L.Z. Han, Elemental redistribution and precipitation reactions of 9Cr1.5Mo1CoB (FB2) steel during tempering. Mater. Charact. 171, 110778 (2020). https://doi.org/10.1016/j.matchar.2020.110778

    Article  CAS  Google Scholar 

  7. J. Moon, T.H. Lee, S.D. Kim, C.H. Lee, J.H. Jang, J.H. Shin et al., Isothermal transformation of austenite to ferrite and precipitation behavior in 9Cr-1.5Mo-1.25Co-0.1 C-VNb heat-resistant steel. Mater. Charact. 170, 110677 (2020). https://doi.org/10.1016/j.matchar.2020.110677

    Article  CAS  Google Scholar 

  8. Y.Q. Zhang, J.F. Gu, L.Z. Han, G. Shen, C.W. Li, Thermal decomposition characteristics of retained austenite and its influence on impact toughness of B-containing 9Cr1Mo1Co(FB2) steel during the two-step tempering. J. Mater. Res. Technol. 12, 2462–2475 (2021). https://doi.org/10.1016/j.jmrt.2021.03.105

    Article  CAS  Google Scholar 

  9. H.F. Yin, G. Yang, J.Q. Zhao, H.S. Bao, Mo-rich Laves phase in a 9.5Cr–1.5MoCoVNbNB heat-resistant steel during long-term aging at 620 °C. Mater. Charact. 182, 111588 (2021). https://doi.org/10.1016/j.matchar.2021.111588

    Article  CAS  Google Scholar 

  10. F. Abe, Precipitate design for creep strengthening of 9%Cr tempered martensite steel for ultra-supercritical power plants. Sci. Technol. Adv. Mater. 9(1), 1–16 (2008). https://doi.org/10.1088/1468-6996/9/1/013002

    Article  CAS  Google Scholar 

  11. V.T. Paul, S. Saroja, M. Vijayalakshmi, Microstructural stability of modified 9Cr–1Mo steel during long term exposures at elevated temperatures. J. Nucl. Mater. 378(3), 273–281 (2008). https://doi.org/10.1016/j.jnucmat.2008.06.033

    Article  CAS  Google Scholar 

  12. K. Maruyama, K. Sawada, J. Koike, Strengthening mechanisms of creep resistant tempered martensitic steel. ISIJ Int. 41(6), 641–653 (2001). https://doi.org/10.2355/isijinternational.41.641

    Article  CAS  Google Scholar 

  13. J. Takahashi, K. Ishikawa, K. Kawakami, M. Fujioka, N. Kubota, Atomic-scale study on segregation behavior at austenite grain boundaries in boron- and molybdenum-added steels. Acta Mater. 133, 41–54 (2017). https://doi.org/10.1016/j.actamat.2017.05.021

    Article  CAS  Google Scholar 

  14. G. Zeiler, R. Bauer, A. Putschoegl, Experiences in manufacturing of forgings for power generation application. La Metall. Ital. 6, 33–40 (2010)

    Google Scholar 

  15. P. Yan, Z.D. Liu, H.S. Bao, Y.Q. Weng, W. Liu, Effect of microstructural evolution on high-temperature strength of 9Cr-3 W-3Co martensitic heat resistant steel under different aging conditions. Mater. Sci. Eng. A A588, 22–28 (2013). https://doi.org/10.1016/j.msea.2013.09.033

    Article  CAS  Google Scholar 

  16. A. Shirzadi, S. Jackson, Structural Alloys for Power plants (Woodhead Publishing, Cambridge, 2014)

    Google Scholar 

  17. F. Liu, H.R. Fors Dan, A. Golpayegani, H.O. Andrén, G. Wahnström, Effect of boron on carbide coarsening at 873K (600 °C) in 9 to 12pct chromium steels. Metall. Mater. Trans. A 43, 4053–4062 (2012). https://doi.org/10.1007/s11661-012-1205-6

    Article  CAS  Google Scholar 

  18. Y.J. Li, D. Ponge, P. Choi, D. Raabe, Segregation of boron at prior austenite grain boundaries in a quenched martensitic steel studied by atom probe tomography. Scr. Mater. 96, 13–16 (2015). https://doi.org/10.1016/j.scriptamat.2014.09.031

    Article  CAS  Google Scholar 

  19. T. Osanai, N. Sekido, M. Yonemura, K. Maruyama, M. Takeuchi, K. Yoshimi, Evolution of boron segregation during tempering in B doped 9% Cr ferritic steel. Mater. Charact. 177, 111192 (2021). https://doi.org/10.1016/j.matchar.2021.111192

    Article  CAS  Google Scholar 

  20. X. Xu, J.A. Siefert, J.D. Parker, R.C. Thomson, Localised creep cavitation on boron nitride in the heat affected zone of 9%Cr tempered martensitic steel welds. Mater. Design 196, 109046 (2020). https://doi.org/10.1016/j.matdes.2020.109046

    Article  CAS  Google Scholar 

  21. L.T. Li, R. Maclachlan, M.A.E. Jepson, R. Thomson, Microstructural evolution of boron nitride particles in advanced 9Cr power plant steels. Metall. Mater. Trans. A 44, 3411–3418 (2013). https://doi.org/10.1007/s11661-013-1642-x

    Article  Google Scholar 

  22. K. Sakuraya, H. Okada, F. Abe, BN type inclusions formed in high Cr ferritic heat resistant steel. Energy Mater. 1, 158–166 (2013). https://doi.org/10.1179/174892406X160624

    Google Scholar 

  23. M. Albu, P. Mayr, F.M. Martin, G. Kothleitner, The influence of boron on the microstructure of a 9 wt% cr ferritic steel. Mater. High Temp. 28(2), 120–125 (2011). https://doi.org/10.3184/096034011X13059091965585

    Article  CAS  Google Scholar 

  24. T. Fujishiro, T. Hara, G. Shigesato, Effect of Mo on γ to α transformation and precipitation behavior in b-added steel. Tetsu-to-Hagane 101(5), 300–307 (2015). https://doi.org/10.2355/tetsutohagane.101.300

    Article  Google Scholar 

  25. H.F. Yin, W.Q. Ge, F.S. Yin, J.Q. Zhao, G. Yang, H.S. Bao, L. Zhou, Effect of stress on the nucleation and evolution of Mo-rich Laves phase in 9.5Cr–1.5MoCoVNbNB heat-resistant steel during tensile rupture at 620°C. Mater. Charact. 196, 112565 (2023). https://doi.org/10.1016/j.matchar.2022.112565

    Article  CAS  Google Scholar 

  26. T. Horiuchi, M. Igarashi, F. Abe, Improved utilization of added B in 9Cr heatresistant steels containing W. ISIJ Int. 42, S67–S71 (2002). https://doi.org/10.2355/isijinternational.42.Suppl_S67

    Article  CAS  Google Scholar 

  27. C.R. Das, S.K. Albert, J. Swaminathan, A.K. Bhaduri, B.S. Murty, Effect of boron on creep behaviour of inter-critically annealed modified 9Cr-1Mo steel. Procedia Eng. 55(12), 402–407 (2013). https://doi.org/10.1016/j.proeng.2013.03.271

    Article  CAS  Google Scholar 

  28. Y. Kimura, K. Kato, Y.W. Chai, Effects of Si on Phase stability and precipitation behavior of C14 laves phase (Fe,Cr). MRS Adv. 4(25–26), 1–7 (2019). https://doi.org/10.1557/adv.2019.112

    Article  CAS  Google Scholar 

  29. G. Da Rosa, P. Maugis, A. Portavoce, J. Drillet, N. Valle, E. Lentzen et al., Grain-boundary segregation of boron in high-strength steel studied by nano-SIMS and atom probe tomography. Acta Mater. 182, 226–234 (2020). https://doi.org/10.1016/j.actamat.2019.10.029

    Article  CAS  Google Scholar 

  30. Q.L. Yong, Secondary-Phase in Steel (Metallurgical Industry Press, Beijing, 2006)

    Google Scholar 

  31. X. Wang, Q. Xu, S.M. Yu, L. Hu, H. Liu, Y.Y. Ren, Laves-phase evolution during aging in fine grained heat-affected zone of a tungsten-strengthened 9% cr steel weldment. J. Mater. Process. Technol. 219, 60–69 (2015). https://doi.org/10.1016/j.jmatprotec.2014.12.007

    Article  CAS  Google Scholar 

  32. A. Umantsev, G.B. Olson, Ostwald ripening in multicomponent alloys. Scr. Metall. Mater. 29, 1135–1140 (1993). https://doi.org/10.1016/0956-716X(93)90191-T

    Article  CAS  Google Scholar 

  33. J. Ågren, M.T. Clavaguera-Mora, J. Golcheski, G. Inden, H. Kumar, C. Sigli, Workshop on applications of computational thermodynamics: Schloβ Ringberg. Calphad 24, 41–54 (2000). https://doi.org/10.1016/S0364-5916(00)00014-6

    Article  Google Scholar 

  34. J. Hald, L. Korcakova, Precipitate stability in creep resistant ferritic steels-experimental investigations and modelling. ISIJ Int. 43, 420–427 (2003). https://doi.org/10.2355/isijinternational.43.420

    Article  CAS  Google Scholar 

  35. M. Yoshizawa, M. Igarashi, T. Nishizawa, Effect of tungsten on the Ostwald ripening of M23C6 carbides in martensitic heat resistant steel. Trans. Iron Steel Inst. Jpn. 91, 272–277 (2005). https://doi.org/10.2355/tetsutohagane1955.91.2_272

    Article  CAS  Google Scholar 

  36. F. Abe, Behavior of boron in 9Cr heat resistant steel during heat treatment and creep deformation. Key Eng. Mater. 345–346, 569–572 (2007). https://doi.org/10.4028/www.scientific.net/KEM.345-346.569

    Article  Google Scholar 

  37. D. Kang, N. Kim, H. Lee, Effect of aging on the corrosion resistance of 2209 duplex stainless steel weldments. Met. Mater. Int. 25, 740–750 (2019). https://doi.org/10.1007/s12540-018-0206-4

    Article  CAS  Google Scholar 

  38. H.F. Yin, J.Q. Zhao, W.Q. Ge, H.S. Bao, L. Zhou, F.S. Yin, Y. Zhang, Cavity growth behavior and fracture mechanism of 9.5Cr–1.5MoCoVNbNB heat-resistant steel during long-term tensile rupture at 620 °C. Mater. Charact. 203, 113130 (2023). https://doi.org/10.1016/j.matchar.2023.113130

    Article  CAS  Google Scholar 

  39. K. Han, H. Ding, X. Fan, W. Li, Y. Lv, Y. Feng, Study of the creep cavitation behavior of P91 steel under different stress states and its effect on hightemperature creep properties. J. Mater. Res. Technol. 20, 47–59 (2022). https://doi.org/10.1016/j.jmrt.2022.07.032

    Article  CAS  Google Scholar 

  40. T.L. Anderson, Fracture Mechanics Fundamentals and Applications (Taylor and Francis Group, Abingdon, 2017)

    Book  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Research and Development Program No. 2021YFB3704100.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiqing Zhao, Wenqing Ge or Fengshi Yin.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, H., Zhao, J., Bao, H. et al. Distribution of Boron in 9.5Cr–1.5MoCoVNbNB Martensitic Heat-Resistant Steel Studied by Secondary Ion Mass Spectroscopy and atom Probe Tomography. Met. Mater. Int. 30, 990–1001 (2024). https://doi.org/10.1007/s12540-023-01563-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-023-01563-y

Keywords

Navigation